Subsonic Airfoils
W.H. Mason Configuration Aerodynamics Class
Typical Subsonic Methods: Methods • For subsonic inviscid flow, the flowfield can be found by solving an integral equation for the potential on the surface • This is done assuming a distribution of singularities along the surface, and finding the “strengths” of the singularities • The airfoil is represented by a series of (typically) straight line segments between “nodes”, and the nonpenetration boundary condition is typically satisfied at control points • Some version of a Kutta condition is required to close the system of equations. node N -1
N N+1
4
3
2
1
Comparison of Method Pressure Distribution with Exact Conformal Transformation Results -2.50 -2.00
Exact Conformal Mapping
-1.50 -1.00
-0.50 0.00 0.50 1.00 -0.2
0.0
0.2
0.4
0.6
x/c
0.8
1.0
1.2
Convergence with increasing numbers of s 0.980
NACA 0012 Airfoil, α = 8°
0.975 CL
0.970 0.965 0.960 0.955 0.950 0
20
40
60 80 No. of s
100
120
A better way to examine convergence: Lift
CL
0.980 0.975 0.970 0.965 0.960 0.955 0.950 0
NACA 0012 Airfoil, α = 8°
0.01
0.02
0.03 0.04 1/n
0.05
0.06
Convergence with s: Moment -0.240
NACA 0012 Airfoil, α = 8°
-0.242 -0.244
Cm -0.246 -0.248 -0.250 0
0.01
0.02
0.03
1/n
0.04
0.05
0.06
Convergence with s: Drag 0.012 0.010
NACA 0012 Airfoil, α = 8°
0.008 CD 0.006 0.004 0.002 0.000 0
0.01
0.02
0.03 0.04 1/n
0.05
0.06
Pressures: 20 and 60 s -5.00 NACA 0012 airfoil, α = 8°
-4.00
20 s 60 s
-3.00 -2.00 -1.00 0.00 1.00 0.0
0.2
0.4
x/c
0.6
0.8
1.0
Pressures: 60 and 100 s -5.00 NACA 0012 airfoil, α = 8°
-4.00
60 s 100 s
-3.00 -2.00
-1.00 0.00 1.00 0.0
0.2
0.4
x/c
0.6
0.8
1.0
Comparison with WT Data: Lift - recall: methods are inviscid! 2.50
2.00 NACA 4412 1.50
CL 1.00
NACA 0012
0.50 CL, NACA 0012 - CL, NACA 0012 - exp. data
0.00
CL, NACA 4412 - CL, NACA 4412 - exp. data
-0.50 -5.0°
0.0°
5.0°
10.0°
α
15.0°
20.0°
25.0°
Comparison with Data: Pitching Moment - about the quarter chord 0.10 NACA 0012
0.05 -0.00
Cm
-0.05 c/4 -0.10 -0.15 NACA 4412
-0.20
Cm, NACA 0012 - Cm, NACA 4412 - Cm, NACA 0012 - exp. data Cm, NACA 4412 - exp. data
-0.25 -0.30
-5.0
0.0
5.0
10.0
α
15.0
20.0
25.0
For Completeness: Drag Data Effect of Camber 2.00 Re = 6 million 1.50
1.00
CL 0.50
NACA 4412 NACA 0012
0.00 data from Abbott and von Doehhoff -0.50 0.004
0.006
0.008
0.010
0.012
CD
0.014
0.016
0.018
Comparison with WT Pressure Distribution -1.2 data from NACA R-646 -0.8 -0.4 -0.0 Predictions from
0.4
α = 1.875° M = .191 Re = 720,000 transition free
0.8 1.2
0.0
0.2
NACA 4412 airfoil 0.4
x/c
0.6
0.8
1.0
1.2
XFOIL: the code for subsonic airfoils
• Methods: Inviscid! • Couple with a BL analysis to include viscous effects • The single element viscous subsonic airfoil analysis method of choice: XFOIL – by Prof. Mark Drela at MIT
• Link available from my software site
Airfoil pressures: What to look for -2.00 Expansion/recovery around leading edge (minimum pressure or max velocity, first appearance of sonic flow)
-1.50
Rapidly accelerating flow, favorable pressure gradient
-1.00
upper surface pressure recovery (adverse pressure gradient)
-0.50 lower surface 0.00
Trailing edge pressure recovery Leading edge stagnation point
0.50
NACA 0012 airfoil, α = 4° 1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Effect of Angle of Attack -5.00 NACA 0012 airfoil Inviscid calculation from -4.00 α = 0°
-3.00
α=4
α=8
-2.00
-1.00
0.00
1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Comparison of NACA 4-Digit Airfoils 0006, 0012, 0018 -0.30
NACA 0006 (max t/c = 6%) NACA 0012 (max t/c = 12%) NACA 0018 (max t/c = 18%)
-0.20 -0.10 y/c -0.00 0.10 0.20 0.30 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Thickness Effects on Airfoil Pressures Zero Lift Case -1.00 Inviscid calculation from -0.50 0.00
0.50
1.00 -0.1
NACA 0006, α = 0° NACA 0012, α = 0° NACA 0018, α = 0° 0.1
0.3
0.5 x/c
0.7
0.9
1.1
Thickness Effects on Airfoil Pressures, CL = 0.48 -3.00 Inviscid calculation from -2.50
NACA 0006, α = 4° NACA 0012, α = 4°
-2.00
NACA 0018, α = 4° -1.50 -1.00 -0.50 0.00 0.50 1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Comparison of NACA 4-Digit Airfoils the 0012 and 4412 0.30 0.20 0.10 y/c -0.00 -0.10 NACA 0012 (max t/c = 12%) NACA 4412 foil (max t/c = 12%)
-0.20 -0.30 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Highly Cambered Airfoil Pressure Distribution - NACA 4412 -2.00 Inviscid calculation from -1.50
NACA 4412, α = 0° NACA 4412, α = 4°
-1.00 -0.50
0.00
0.50 Note: For a comparison of cambered and uncambered presuure distributions at the same lift, see Fig. 18. 1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Camber Effects on Airfoil Pressures, CL = 0.48 -2.00 Inviscid calculation from -1.50
NACA 0012, α = 4° NACA 4412, α = 0°
-1.00
-0.50 0.00
0.50
1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Camber Effects on Airfoil Pressures, CL = 0.96 -4.00 Inviscid calculations from NACA 0012, α = 8° NACA 4412, α = 4°
-3.00
-2.00 -1.00
0.00
1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Camber Effects on Airfoil Pressures, CL = 1.43 -6.00 Inviscid calculations from -5.00
NACA 0012, α = 12° NACA 4412, α = 8°
-4.00 -3.00
-2.00 -1.00 0.00 1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
NACA 6712 Airfoil - Heavy Aft Camber Geometry 0.15 y/c 0.05 -0.05 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
NACA 6712 Airfoil - Heavy Aft Camber, Pressure Distribution -2.00 Inviscid calculations from -1.50
α = -.6 (CL = 1.0)
-1.00 -0.50 0.00 0.50 NACA 6712 1.00 -0.1
0.1
0.3
0.5 x/c
0.7
0.9
1.1
Whitcomb GA(W)-1 Airfoil 0.15 0.10 0.05 y/c 0.00 -0.05 -0.10 -1.00
0.0
0.2
0.4
0.6 0.8 Inviscid calculations from x/c
1.0
-0.50 0.00
0.50
GA(W)-1 α = 0°
1.00 0.0
0.2
0.4
x/c
0.6
0.8
1.0
Liebeck’s Hi-Lift Airfoil: Geometry and Lift - note shape of pressure recovery -
From R.T. Jones, Wing Theory
Liebeck’s Hi-Lift Airfoil: Drag
From Bertin, Aerodynamics for Engineers
Camberline Design: DesCam (Z-Z0)/C - DesCam Z/C - from Abbott & vonDoenhoff
0.12
Design Chord Loading
0.10 0.08 Z/C
2.00 1.50 Δ 1.00
0.06 0.50
0.04
0.00
0.02 0.00 0.0
0.2
0.4
0.6 X/C
0.8
-0.50 1.0
Airfoil Selection
Issues: • Cruise CL, and CLmax, don’t forget Cm0 -large LE radius? -Near parallel trailing edge closure • Profile Drag: Laminar flow? • Thickness for low weight and internal volume • Tails: often symmetric, 6 series foils picked
To Conclude
You have the tools to do single element airfoil design