Ejercicios de Vectores en R2
Ejercicios en R2 EJERCICIO 1. Determinar si los vectores AB = (35, -21) y CD = (-10, 6) tienen la misma dirección. Calcular el módulo de ambos vectores. Para determinar si dos vectores tienen la misma dirección basta comprobar si sus componentes son proporcionales. El cociente de las primeras componentes es 35/-10 (7/-2) y el de las segundas 21/6 (-7/2), por lo tanto los vectores tienen la misma dirección.
El módulo de los vectores es:
|AB| = (1225 + 441)^1/2 = (1666)^1/2
|CD| = (100 + 36)^1/2 = (136)^1/2 EJERCICIO 2. Dado el vector libre a = (5, 3) y el punto A = (4, -1), hallar las coordenadas del punto B para que el vector fijo AB represente al vector a .
Llamando (x, y) a las coordenadas de B, las componentes del vector AB son (x - 4, y + 1). Para que el vector AB represente al vector libre a se ha de verificar (x - 4, y + 1) = (5, 3), de donde, x - 4 = 5 e y + 1 = 3, obteniéndose x = 9 e y = 2. Así las coordenadas de B son (9, 2). EJERCICIO 3. Un vector que va de A(3, 5) a B(x, y) representa al mismo vector que va de B(x, y) a C(8, 1). Hallar B(x, y). Sean: V = AB = B - A = (x, y) - (3, 5) = (x-3, y-5) W = BC = C - B = (8, 1) - (x, y) = (8-x, 1-y) Si V=W => (x-3, y-5) = (8-x, 1-y) <=> x-3 = 8-x => x=11/2 y-5 = 1-y => y=3 Por tanto, el punto buscado es B (11/2, 3)
EJERCICIO 4. Qué pares de los siguientes vectores forman una base:
EJERCICIO 5. Dados los vectores vectores
y
sean:
1 Perpendiculares.
2 Paralelos.
3 Formen un ángulo de 60°.
=(2, k) y
= (3, - 2), calcula k para que los
EJERCICIO 6. Calcula la proyección del vector
sobre el vector
.
EJERCICIO 7. Hallar un vector unitario .
de la misma dirección del vector
EJERCICIO 8. Calcula la proyección del vector A(6,0), B(3,5), C(-1,-1).
sobre el
, siendo
EJERCICIO 9. Comprobar que el segmento de une los puntos medios de los lados AB y AC del triángulo: A(3,5), B(-2,0), C(0,-3), es paralelo al lado BC e igual a su mitad.
EJERCICIO 10. Calcular los ángulos del triángulo de vértices: A(6,0), B(3,5), C(-1,-1).
Ejercicios de Vectores en R2 1. El vector
, ¿se puede expresar como combinación lineal de
los vectores
?
2. Qué pares de los siguientes vectores forman una base:
3. Hallar un vector unitario .
de la misma dirección del vector
4. Suponiendo que respecto de la base ortonormal { , vectores
tienen como expresiones:
Calcular el valor de k sabiendo que
5. Dados los vectores vectores
} del plano los
y
=(2, k) y
sean:
1 Perpendiculares.
2 Paralelos.
3 Formen un ángulo de 60°.
.
= (3, - 2), calcula k para que los
6. Hallar k si el ángulo que forma
= (3, k) con
= (2, -1) vale:
1 90°
2 0°
3 45°
7. Suponiendo que respecto de la base ortonormal { , vectores
} del plano los
tienen como expresiones:
Calcular el valor de k para que los dos vectores sean ortogonales.
8. Calcular los ángulos del triángulo de vértices: A(6,0), B(3,5), C(-1,1).
9. Calcula la proyección del vector B(3,5), C(-1,-1).
sobre el
, siendo A(6,0),
10. Comprobar que el segmento de une los puntos medios de los lados AB y AC del triángulo: A(3,5), B(-2,0), C(0,-3), es paralelo al lado BC e igual a su mitad.
Ejercicios de Vectores en R3
EJERCICIO 1. Dados los vectores hallar: 1.
,
2.
,
3. 4. 5. 1.
,
,
y
2.
,
3.
4.
5.
EJERCICIO 2. ¿Para qué valores de a los vectores forman una base?
,
y
Para a ≠ 1, los vectores forman una base. EJERCICIO 3. Determinar el valor del parámetro k para que los vectores k
−2
+3
,
=−
+k
+
=
sean:
1) Ortogonales. Para que los vectores sean ortogonales su producto escalar tiene que ser igual a cero.
2) Paralelos. Para qué dos vectores sean paralelos, sus componentes tienen que ser proporcionales.
El sistema no ite solución. EJERCICIO 4. Hallar los cosenos directores del vector
EJERCICIO 5. Hallar el ángulo que forman los vectores
.
y
.
EJERCICIO 6. Dados los vectores
y
, hallar:
1 Los módulos de
y
·
2 El producto vectorial de
y
·
3 Un vector unitario ortogonal a
y
·
4 El área del paralelogramo que tiene por lados los vectores 1 Los módulos de
y
y
·
2 El producto vectorial de
y
·
3 Un vector unitario ortogonal a
y
·
4 El área del paralelogramo que tiene por lados los vectores
EJERCICIO 7. Calcular el producto mixto:
y
·
.
·
EJERCICIO 8. Dados los vectores
,
y
hallar el producto mixto . ¿Cuánto vale el volumen del paralelepípedo que tiene por aristas los vectores dados?
EJERCICIO 9. Determinar los cosenos directores del vector (1, 2, −3).
EJERCICIO 10. Determinar el área del triángulo cuyos vértices son los puntos A(1, 1, 3), B(2, −1, 5) y C(−3, 3, 1).
,
Ejercicios de Vectores en R3 1. Hallar dos vectores de módulo la unidad y ortogonales a (2, −2, 3) y (3, −3, 2).
2. Hallar un vector perpendicular a sea unitario.
y
, y que
3. Dados los vectores
y
y comprobar que este vector es ortogonal a vector
y compararlo con
4. Considerar la siguiente figura:
.
, hallar el producto ya
. Hallar el
Se pide: 1 Coordenadas de D para que ABCD sea un paralelogramo. 2 Área de este paralelogramo. Por ser la figura un paralelogramo, los vectores equipolentes.
y
son
5. Dados los puntos A(1, 0, 1), B(1, 1, 1) y C(1, 6, a), se pide: 1 Hallar para qué valores del parámetro a están alineados. 2 Hallar si existen valores de a para los cuales A, B y C son tres vértices de un paralelogramo de área 3 y, en caso afirmativo, calcularlos. 1 Hallar para qué valores del parámetro a están alineados. Si A, B y C están alineados los vectores y tienen la misma dirección, por lo que son linealmente dependientes y tienen sus componentes proporcionales.
2 Hallar si existen valores de a para los cuales A, B y C son tres vértices de un paralelogramo de área 3 y, en caso afirmativo, calcularlos. El módulo del producto vectorial de los vectores área del paralelogramo construido sobre
y
y .
es igual al
6. Sean A(−3, 4, 0), B(3, 6, 3) y C(−1, 2, 1) los tres vértices de un triángulo. Se pide: 1 Calcular el coseno de cada uno de los tres ángulos del triángulo. 2 Calcular el área del triángulo. 1 Calcular el coseno de cada uno de los tres ángulos del triángulo.
2 Calcular el área del triángulo.