[CHAP. 3
APPLICATIONS TO DIFFERENTIAL EQUATIONS
102
31. Solve the partial differential equation
azy at2
16x + 20 sinx
subject to the conditions Y(O, t) = 0,
Y(-rr, t)
= 1671",
Yt (x, 0) = 0,
+
16x
Y(x, 0)
12 sin2x - 8 sin3x
Taking Laplace transforms, we find s2y -
8
Y(x, 0) -
d2y
Yt (x , 0) -
+
4 dxZ
16x
Y
8
+
20 sin x s
(1)
or, on using the given, conditions, d2y dx2 -
-4(s2 + 1)x
1
4 (sZ + 1)Y
5 sin x
=
y(O, s)
.
3s sm2x +
-- -
8
8
0,
y(,., s)
2s sin3x
16,.
=
(2) (3)
8
A particular solution of (2) has the form ax +
(4)
b sin x + c sin 2x + d sin 3x
Then substituting and equating co~fficients of like , we find the particular solution 16x + 8
20 sin x + 12s sin 2x ~ 88 sin 3x s(s2 + 5) 82 + 17 s2 + 37
(5)
The general solution of the equation (2) with right hand side replaced by zero [i.e. the complementary solution] is (6)
Yc
Thus the general solution of (2) is Y
=
Yp
+
(7)
Yc
Using the conditions (3) in (7), we find 0
= c2 = 0.
from which c1
Thus 16x
-8
y
+
20 sin x + 12s sin 2x 8(82+5) 82 +17
-
88 sin 3x 82+37
Then takin~ the inverse Laplace transform, we find the required solution
Y(x, t)
16x + 4 sin x (1- cos
V5 t)
+ 12 sin 2x cos Yf7 t -
8 sin 3x cos..J37 t
Supplementary Problems ORDINARY DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS
Solve each of the following by using Laplace transforms and check solutions. 32. Y"(t)
+ 4Y(t)
33. Y"(t) - 3Y'(t)
Ans.
Y(t)
=
= 9t,
+
Y(O) = 0, Y'(O) = 7.
2Y(t) = 4t
+
12e-t,
An8.
Y(t)
=
Y(O) = 6, Y'(O) =· -1.
3et- 2e2t + 2t + 3 + 2e-t
3t + 2 sin 2t
CHAP. 3]
34.
35.
Y"(t)
Ans. 36.
=
Y(t)
=
Y(t)
+
25t2
+ Y(t) =
40t
125t2,
+
8 cost,
22
Y(O)
cost - 4 sin t
+
= Y'(O) = 0.
Y(O)
2e2t (2 sin t - 11 cost)
= 1, +
Y'(O)
= -1.
4t cost
= et, Y(O) = 0, Y'(O) = 0, Y"(O) = 0. . t = }tet + fs.e-lht { 9 cos t + -5vfa 2s m 2
Y'"(t) - Y(t)
Ans. 37.
+ 5Y(t) =
Y"(t) - 4Y'(t) Ans.
103
APPLICATIONS TO DIFFERENTIAL EQUATIONS
Y(t)
yiv(t)
+ 2Y"(t) + Y(t) =
Ans.
Y(t)
=
sin t,
V:
V3}
Y(O) = Y'(O)
= Y"(O) = Y"'(O) = 0.
i{(3- t2) sin t - 3t cost}
38. Find the general solution of the differential equations of: (a.) Problem 2, Page 82; (b) Problem 3, Page 83; (c) Problem 6, Page 84.
Ans.
c1 et + c2e2t + 4te2t e- t (c1 sin 2t. + c 2 cos 2t) + ie-t sin t
(a) Y
=
(b) Y
+ 9Y(t)
39.
Solve
Y"(t)
40.
Solve
yiv(t) - 16Y(t)
Y
Ans. 41.
Solve
Ans. 42.
=
= 30 sin t
if Y(O)
=
+ 3Y
Y(11-/2) = 0.
= 0,
Y'(O)
c1 sin 3t + c2 cos 3t +
Ans. Y(t)
= 2,
Y"(7r)
= 0,
=
2t
Y'"(7r)
+
7T
cos 2t
sin 3t
= -18.
tit
+
!et - fe3t
(e3u- eu) F(t- u) du
Solve the differential equation
where
Ans.
F(t) .
={
1
0
< t >
0
Y(t)
= i
sin 2t
and
Y(t)
= i
+
+ 4Y
F(t),
Y(O)
Y'(O)
=1
for t > 1
!-{cos (2t-- 2) - cos 2t}
sin 2t
= 0,
1 1
+
!(1 - cos 2t)
for t
<
1
Solve Problem 42 if: . (a.) F(t) = 1l(t - 2), [Heaviside's unit step function]; delta function]; (c) F(t) = 8(t - 2).
Ans.
(a.) Y(t) (b) Y(t) (c)
Y(t)
= i sin 2t if t < 2, t = sin 2t, t > 0
=t
sin 2t if t
sin 2t
+
(b) F(t)
= 8(t),
!{1 - cos (2t- 4)} if t > 2
< 2, !{sin 2t + sin (2t- 4)}2 if t > 2
ORDINARY DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS
Solve each of the following by, using Laplace transforms and check solutions. 44.
t
= 0.
= F(t) if Y(O) = 1, Y'(O)
Y"
43.
= 0,
=
2(sin 2t- sin t)
Y" - 4Y' Y
= 18t if Y(O)
(c) Y
Y"
+ tY' -
Y
=
0,
Y(O)
=
45. tY"
+
(1- 2t)Y' - 2Y
46. tY"
+
(t - 1)Y' - Y ·= 0,
= 0,
0,
Y'(O)
= 1.
Ans. Y
Y(O) = 1, Y'(O) = 2.
=t Ans. Y = e2t
Y(O) = 5, Y(oo) = 0.
Ans. Y = 5e - t
47. Find the bounded solution of the equation
t2Y" which is such that Y(1)
= 2.
+
tY'
+
(t2- 1)Y
Ans. 2J 1 (t)/J1 (1)
=
0
[Dirac
1()4
[CHAP. 3
APPLICATIONS TO JJIFFERENTIAL EQUATIONS
SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS
Ans.
49.
50.
Solve
=
Y
t e-t
2 + -ft2 + -fe-t -!sin t +
=
=
=
if X(O)
Ans. X= 1+e-t-e-at-e-l>t, Y 51.
tY + Z { Y'- Z
Ans.
Y
54.
=
Z
(t- 1)e-t
e-t
=
1 - -j-e-t +
= -2, i
= 0.
Z(O)
sin t -
l
cost
=
Z
fl-e-t - !e2t + tte-t
= Y(O) = Y'(O) = 0 . = 0,
Y(O)
Y'(,.)
= 1,
given that Y(O)
where a= !(2-\1'2), b
Z(O)
= 1,
= f(2+\1'2)
= 0.
Z(O)
= -1.
= -1,
Y'(O)
= -J1 (t)- e-t
=
Y
Y'(O)
= Y'(O) = Z(O) = 0.
sin t + tte-t,
=
-3Y" + 3Z" te-t - 3 cost { tY" - Z' sin t
53. Solve
Ans.
= J0(t),
+ tZ' =
=
Z
cost,
= 1+e-t-oe-at-ae-bt
Solve Problem 49 with the conditions
5Z. Solve
i
fl-e-t + 4\e2t - !-cost-
X' + 2Y" e-t .{ X'+2X- Y 1
l
if Y(O)
=
Y
= 3,
subject to the conditions Y(O)
Y'- Z'- 2Y + 2Z . = sin t { Y" + 2Z' + Y 0 ·
Solve
Ans.
= =
Y' + Z' { Y"- z
48. Solve
.ft2 +it-
i- te - t,
Z
=
given that
Y(O)
= 2,
Z(O)
= 4,
Z"(O) = 0.
.ft2 + J+ te - t + tte-t +cost
Find the general solution of the system of equations in Problem 49.
Ans.
Y Z
c1 + c2 sin t + c3 cost + -ft2 + -fe-t
= 1 - c2 sin t - c3 cos t - -fe-t
APPLICATIONS TO MECHANICS 55• .'Referring to Fig. 3-1, Page 79, suppose that mass m has a force "f'(t), t
> 0 acting on it but that no
damping forces are present. (a) Show that if the mass starts from rest at a distance X= a from the equilibrium position (X then the displacement X at any time t > 0 can be .determined from the equation of motion
mX" + kX
=
"F(t),
X(O)
= a,
X'(O)
= 0),
=0
where primes denote derivatives with respect to t.
= F 0 (a constant) for t "f'(t) = F 0 e-at where a > 0.
(b) Find X at any time if "f'(t) (c) Find X at any time if
Ans.
(b)
X=
(c)
X
=
> 0.
F ( 1-cos'\jmt . [k ) a+k 0
Fo -~ a+ ma2 +k(e-at-cosyk/mt)
+
aF0 ym/k . -~ ma2 +k smyk/mt
56. Work Problem 55 if "ji'(t) = F 0 sin wt, treating the two cases: the physical significance of each case.
(a) w- ~ yk/m, (b) w
= yk/m.
Discuss
57. A particle moves along a line so that its displacement X from a fixed point 0 at any time t is given by X"(t) + 4 X(t) + 5 X(t)
=
80 sin 5t