Tabla de Propiedades y algunas Transformadas de Fourier +∞
1 +∞ F (ω)·e jωt dω 2 π −∫∞
f(t) =
F(ω)= ∫ f (t )·e − jωt dt −∞
1
a1 f 1 ( t ) + a 2 f 2 ( t )
a1 F1 ( ω ) + a2 F2 ( ω )
2
f ( at ), a ≠ 0
1 ω F a a
3
f ( t m t0 )
e m jωt0 F ( ω )
4
e ± jω0t f ( t )
5
f ( t ) ⋅ cos( ω0 t )
1 2
6
f ( t ) ⋅ sen( ω0 t )
1 2j
F ( ω m ω0 ) F ( ω − ω0 ) + 12 F ( ω + ω0 ) F ( ω − ω0 ) −
1 2j
F ( ω + ω0 )
F( t )
2 πf ( −ω )
8
d f (t ) , n ∈ℵ dt n
( jω ) n F ( ω )
9
∫ f ( t ′ )dt ′
1 F ( ω ) + πF ( 0 )δ( ω ) jω
( − jt )n f ( t ), n ∈ ℵ
d n F( ω ) dωn
7 n
t
−∞
10
12
f (t ) − jt f 1 ( t )* f 2 ( t )
13
f1( t ) ⋅ f 2 ( t )
11
ω
∫ F ( ω′ )dω′
−∞
F1 ( ω ) ⋅ F2 ( ω ) 1 2π
∞
∫ f 1 ( t ) f 2 ( t )dt
14
F1 ( ω )* F2 ( ω )
∞ 1 2π
−∞
∫ F1 ( ω ) ⋅ F 2 ( ω )dω
−∞
1 a + jω 2a 2 a + ω2
e − at u( t )
15 16
e
−a t
2
−
ω2 4a
17
e − at , a ≠ 0
18
A ⋅ p2T ( t )
2 ATsinc( ωT )
A 1 − , t < T ∆( t ) = t >T 0 , t n −1 e −at u( t ) (n − 1) !
ωT ATsinc 2 2
(
19 20
t T
π a
)
e
1
( jω + a )
n
21
e − at sen ω0 t ⋅ u( t )
ω0 (a + jω)2 + ω02
22
e − at cos ω0 t ⋅ u( t )
(a +
23
kδ( t )
24
k
25
sgn( t )
2 jω
26
u( t )
1 + πδ( ω ) jω
27
cos ω0 t
28
sen ω0 t
jπ[δ(ω + ω0 ) − δ(ω − ω0 )]
29
e ± jω0t
2πδ( ω m ω0 )
∞
30
k 2 πkδ( ω )
π[δ(ω − ω0 ) + δ(ω + ω0 )]
T 2
∑ Cn e jnω t , Cn = T ∫ f (t )·e − jnω t dt , ω0 = n = −∞ 1
0
0
−T 2
∞
31
a + jω 2 jω) + ω02
∑
2π T
δ (t − nTS )
∞
n = −∞
ωS
n = −∞
32
2 π ∑ Cn δ(ω − nω0 ) ∞
∑ δ (ω − nω
n = −∞
t n , n ∈ℵ
2 πj n MSc. Ing. Franco Martin Pessana E-mail:
[email protected]
S
), ω S
d n δ(ω) dω n
=
2π TS
Tabla de Propiedades y algunas Transformadas de Laplace f(t) =
σ + j∞
1 F (s )·e st ds , s = σ + jω 2πj σ−∫j∞
F(s) =
+∞
∫ f (t )·e
− st
dt
0
1
a1 f 1 ( t ) + a 2 f 2 ( t )
a1 F1 ( s ) + a2 F2 ( s )
2
f ( at ), a ≠ 0
1 s F a a
3
f ( t − τ )u( t − τ )
e − τs F ( s )
4
e ± at f ( t )
F( s m a )
5
f 1 ( t )* f 2 ( t )
6
f1( t ) ⋅ f2 ( t )
7
dn f (t ) , n ∈ ℵ, t ≥ 0 dt n
F1 ( s ) ⋅ F2 ( s ) c + j∞
∫ F1 ( τ )F2 ( s − τ )dτ
c − j∞
s n F ( s ) − s n−1 f ( 0 ) − s n−2 f ′( 0 ) − L − f ( n−1 ) ( 0 ) 0
f ( t )dt F ( s ) −∫∞ + s s n d F( s ) ds n
t
∫ f ( t ′ )dt ′
8
−∞
9
( −t )n f ( t ), n ∈ ℵ
10
f (t ) t
∞
∫ F ( u )du s
11
f (t ) = f (t +T )
12
f (0 )
1 T − st ∫ f ( t )e dt 1 − e −sT 0 lím sF ( s )
13
lím f ( t )
lím sF ( s )
14
( n −1 ) (t ) lím f
n lím s F ( s )
P(α ) ∑ Q′(αk ) e α t , α k / Q(α k ) = 0
P( s ) , gr (P ) < gr (Q ) = n Q( s )
s →∞
t →∞
s→0
t →∞
s→0
n
15
k
k =1
k
16
e ± at u( t )
17
t n e ± at u( t ), n ∈ ℵ
18
u( t )
19
e
1 sma n! (s m a )n+1 1 s +∞ 2a , con Fb (s) = ∫ f (t )·e −st dt 2 a −s −∞
−a t
2
20
(1 − e ) ⋅ u( t )
21
e − at sen ω0 t ⋅ u( t )
22
e − at cos ω0 t ⋅ u( t )
23
cos ω0 t ⋅ u( t )
s s + ω02
24
sen ω0 t ⋅ u( t )
ω0 s + ω02
25
kδ( t )
k
26
d δ( t ) dt n
sn
27
∑ δ(t − nT )
a s (s + a ) ω0 (s + a )2 + ω02
− at
s+a 2 + ω02
(s + a ) 2
2
n
∞
1 1 − e − sT s 2 s − ω02
n = −∞
28
cosh ω0 t ⋅ u( t )
29
senh ω0 t ⋅ u( t )
ω0 s 2 − ω02 MSc. Ing. Franco Martin Pessana E-mail:
[email protected]
Tabla de Propiedades de la Transformada Z Propiedades Comunes para TZB y TZU #
f [n ] =
1 F ( z )·z n−1dz , n ∈ Ζ 2πj C∫
1
a1 f 1 [n ] + a 2 f 2 [ n ]
2
f [n ]
Fb (z) =
∞
Im{ f [n ]}
5
n k f [n ]
6
a ± n f [n ] , a ≠ 0
n=0
a1 F1 ( z ) + a2 F2 ( z )
F (z )
1 2
4
F(z) = ∑ f [n ] z − n
n= −∞
Re{ f [n ]}
3
∞
∑ f [n ] z − n ;
1 2j
[F (z ) + F (z )] [F (z ) − F (z )] k
d ( −1 )k z F ( z ), k ∈ ℵ ∪ {0} dz F (a m1 z )
{f [ ]}* {g[ ]}
7
n
F ( z ) ⋅ G( z )
n
1 n −1 ∫ F ( z )z dz , n ∈ Ζ 2πj γ
8
f [n ] =
9
T f [nTS ] = S 2π
π TS −
∫ F (e π
j ωT S
F( z )
) ⋅ e jnωTS dω
F( z )
TS
1 1 z ∫ F (ω) ⋅ G dω 2πj γ ω ω
10
f [ n ] ⋅ g [n ]
#
1 f [n ] = F ( z )·z n−1dz , n ∈ Ζ 2πj C∫
1
f [n + a ]
z a F( z )
2
f [n −a ]
z −a F( z )
3
f [− n ]
1 F z
4
f [n ] n+a
− z a ∫ z −1−a F ( z )dz
5
f [−n ]
1 F z
#
1 f [n ] = F (z )·z n−1dz , n ∈ ℵ ∪ {0} ∫ 2 πj C
F(z) = ∑ f [n ] z −n
1
f [n + a ]
z a F (z ) − f [0 ] − z −1 f [1] − L − z − a+1 f [a −1] , a ∈ ℵ
2
f [n −a ]
z − a F (z ) , a ∈ ℵ
3
f [n −a ]
4
f [0 ]
z − a F ( z ) + f [−a ] + z −1 f [−a +1] + z −2 f [− a+ 2 ] + L + z − a +1 f [−1] lim F (z )
5
lim f [n ] n→∞
lim 1 − z −1 ·F (z )
6
∇f [ n ]
z −1 F (z ) z
7
∇ m f [n ]
8
∆f [n ]
9
∆m f [n ]
10
∑ f [k ]
Propiedades Exclusivas de TZB Fb (z) =
∞
∑ f [n ] z − n
n= −∞
Propiedades Exclusivas de TZU ∞
n=0
[
z →∞
z →1
(
]
)
z −1 F (z ) z (z − 1)F (z ) − zf [0 ] m
(z − 1) F (z ) − z ∑ (z − 1) m
m − k −1
k =0
z F (z ) z −1 ∞ f F (z ′) dz ′ + lím [n ] ∫ n→∞ n z z′
n
11
m −1
k =0
f [n ] , n ∈ℵ n MSc. Ing. Franco Martin Pessana E-mail:
[email protected]
∆k f [0 ]
Identidad de Parseval ∞ 1 1 −1 ∑ f [n ] g [n ] = ∫ F (ω) ⋅ G ω dω n = −∞ 2πj γ ω
∇f [n ] = f [n ] − f [n−1] ∆f [n ] = f [n+1] − f [n ]
Siendo:
∞
2
∑ f [n ] =
n = −∞
1 1 −1 ∫ F (ω) ⋅ F ω dω 2πj γ ω
Pares de Transformadas Z Unilateral #
f [n ] =
1 F (z )·z n −1dz , n ∈ ℵ ∪ {0} 2πj
∞
∫
C
F(z) = ∑ f [n ] z −n n=0
Región de Convergencia
1
∀z ∈ Ζ
δ[n ]
1 2
δ[n − m]
3
u[n ]
4
n·u[n ]
5
n 2 ·u[n]
6
a n ·u[n]
7
n·a n−1 ·u[n]
8
(n + 1)·a n ·u[n]
9
(n + 1)(n + 2 )L (n + m ) a n ·u[n]
10
cos(Ω0 n )·u[n]
11
sen(Ω 0 n )·u[n]
12
a n ·cos(Ω 0 n )·u[n]
z ( z − a cos Ω0 ) z 2 − 2az cos Ω 0 + a 2
z >a
13
a n ·sen(Ω 0 n )·u[n]
az sen Ω0 z − 2az cos Ω 0 + a 2
z >a
14
e − anT u[n]
15
e − anT ·cos(nω0T )·u[n]
z z − e −aT z z − e − aT cos ω0T z 2 − 2 ze −aT cos ω0T + e −2 aT
16
e − anT ·sen(nω0T )·u[n]
ze − aT sen ω0T z 2 − 2 ze −aT cos ω0T + e −2 aT
z > e − aT
17
senh(Ω 0 n )·u[n]
z senh Ω 0 z 2 − 2 z cosh Ω 0 + 1
z > e − Ω0
18
cosh(Ω 0 n )·u[n]
m!
z
∀z ∈ Ζ − {0}
−m
z z −1 z (z − 1)2 z (z + 1) (z − 1)3 z z−a z (z − a )2
z >1 z >1 z >1 z >a z >a
z2 (z − a )2
z >a
z m +1 (z − a )m+1 z (z − cos Ω0 ) 2 z − 2 z cos Ω0 + 1 z sen Ω0 z − 2 z cos Ω0 + 1 2
2
(
)
z (z − cosh Ω0 ) z − 2 z cosh Ω 0 + 1 2
z >a z >1 z >1
z > e − aT z > e − aT
z > e − Ω0
Expresiones útiles
sen 2 θ + cos 2 θ = 1 cos θ − sen θ = cos 2θ 2
2
(1 + cos 2θ ) 2 sen θ = 12 (1 − cos 2θ ) sen(α ± β ) = sen α ·cos β ± cos α ·sen β
cos 2 θ =
1 2
cos(α ± β ) = cos α ·cos β m sen α ·sen β
sen α ·sen β = 12 cos(α − β ) − 12 cos(α + β )
cos α ·cos β = 12 cos(α − β ) + 12 cos(α + β )
sen α ·cos β = 12 sen(α − β ) + 12 sen(α + β )
MSc. Ing. Franco Martin Pessana E-mail:
[email protected]
Tabla de Propiedades Transformada de Fourier de una Secuencia (TFS) 1 f [n] = 2π
#
π
∫π ( )
a1F1 (e
f [n] ⋅ e
3
± jnω0
j
f [− n]
6
f [− n]
j
f [n L ] si n = kL , k ∈ Ζ Sobremuestrestreador: f (L ) [n] = , si n ≠ kL , k ∈ Ζ 0
8
Submuestreador: g [n] = f [nM ]
9
x[n ]* h[n]
10
x[n ] ⋅ h[n ]
11
f [n] − f [n − 1]
j L
( )
G e jω =
1 2π
14
f [n] = δ [n] ∞
∑
18
−
−1
−j
j
j
dω F e jω = 1
( ) F (e ω ) = e j
( )
F e jω =
∑
j
ak e
2π nk N
( )
∑δ (ω − ω
E=
∑
0
− 2π k )
∞
∑ a δ ω − k
k = −∞
k =0
Relación de Parseval para señales aperiódicas:
k = −∞
k = −∞
F e jω = 2π ∞
2πk N
∑ δ ω −
∞
F e jω = 2π N −1
− jn0ω
∞
2π N
( )
f [n] = e jω0n
19
j
(1 − e ω ) F (e ω ) dF (e ω ) j
δ [n − kN ]
Serie Discreta de Fourier: f [n] =
)
−
j
−j
k = −∞
17
− 2π l ) M )
l =0
j
f [n] = δ [n − n0 ] f [n] =
j
(ω θ ) θ ∫π X (e )⋅ H (e )dθ (1 − e ω )F (e ω )
k = −∞
nf [n]
∑ F (e ((ω
π
∑ f [k ]
13
M −1
1 M
X (e j ω ) ⋅ H (e j ω )
n
16
0
−j
7
15
m
−j
5
12
) + a2 F2 (e jω )
F e jω ⋅ e m jn 0ω
f [n]
4
jω
( ) F (e (ω ω ) ) F (e ω ) F (e ω ) F (e ω ) F (e ω )
f [n m n0 ]
2
− jnω
n
n = −∞
−
a1 f1[n ] + a 2 f 2 [n ]
1
∞
∑ f[ ] ⋅ e
F(e jω ) =
F e jω e jnω dω
f [n] = 2
n =−∞
1 2π
π
∫π ( ) F e jω
2
2π k N dω
−
Tabla de Propiedades de Transformada Discreta de Fourier (TDF) #
f [n] =
1 N
N −1
∑ k =o
F[k ] ⋅ e
j
2π ⋅ n ⋅ k N
; n = 0,1,2,3, L , N − 1
a1 f 1 [n ] + a 2 f 2 [ n ]
2
f ( [n m n0 ] )N
3
f [n] ⋅ W N ± k0n x[n] ⊗ h[n] =
N −1
∑ n =o
1
4
F [k ] =
N −1
∑ x[l ]⋅ h([n − l ])
N
f [n ] ⋅ e
−j
2π ⋅ n ⋅ k N
; k = 0,1,2,3, L , N − 1
a1 F1 [k ] + a2 F2 [k ]
F [k ] ⋅ W N ± n0k con WN = e
−j
2π N
F ( [k ± k 0 ])N con WN = e
−j
2π N
X [k ]⋅ H [k ]
, con n = 0,1,2,3, L , N − 1
l =0
5 6 7
x[n ] ⋅ h[n ]
f [n]
1 N
N −1
∑ X [l ] ⋅ H ([k − l ]) l =0
f ( [− n])N
N
, con k = 0,1,2,3, L , N − 1
F ( [− k ] )N F [k ]
MSc. Ing. Franco Martin Pessana E-mail:
[email protected]