Placa de orificio. ¿Qué es? La placa de orificio es uno de los dispositivos de medición más antiguos, fue diseñado para usarse en gases, no obstante se ha aplicado ampliamente y con gran éxito para medir el gasto de agua en tuberías. La ventaja de las placas de orificio, a la hora de medir caudales, es su bajo coste, el inconveniente es la falta de precisión. El uso de la placa de orificio en este caso es para crear una pérdida de carga adicional en la red. Para el cálculo de la placa de orificio se va a utilizar, la norma ISO 5167, que determina la geometría y el método de empleo, es decir, las condiciones de funcionamiento e instalación de las placas de orificio, cuando se instala en una tubería en carga. Además, esta norma específica la información previa para calcular el caudal, siendo aplicable junto con los requisitos dados en la norma ISO 5167-1. La placa de orificio es el elemento primario para la medición de flujo más sencillo, es una lámina plana circular con un orificio concéntrico, excéntrico ó segmentado y se fabrica de acero inoxidable, la placa de orificio tiene una dimensión exterior igual al espacio interno que existe entre los tornillos de las bridas del montaje, el espesor del disco depende del tamaño de la tubería y la temperatura de operación, en la cara de la placa de orificio que se conecta por la toma de alta presión, se coloca perpendicular a la tubería y el borde del orificio, se tornea a escuadra con un ángulo de 900 grados, al espesor de la placa se la hace un biselado con un chaflán de un ángulo de 45 grados por el lado de baja presión, el biselado afilado del orificio es muy importante, es prácticamente la única línea de o efectivo entre la placa y el flujo, cualquier rebaba, ó distorsión del orificio ocasiona un error del 2 al 10% en la medición, además, se le suelda a la placa de orificio una oreja, para marcar en ella su identificación, el lado de entrada, el número de serie, la capacidad, y la distancia a las tomas de presión alta y baja. En ocasiones a la placa de orificio se le perfora un orificio adicional en la parte baja de la placa para permitir el paso de condensados al medir gases, y en la parte alta de la placa para permitir el paso de gases cuando se miden líquidos. Con las placas de orificio se producen las mayores pérdidas de presión en comparación a los otros elementos primarios para medición de flujo más comunes, con las tomas de presión a distancias de 2 ½ y de 8 diámetros antes y/o después de la placa se mide la pérdida total de presión sin recuperación posterior. Se mide la máxima diferencial posible con recuperación de presión posterior y, con tomas en las bridas se mide una diferencial muy cerca de la máxima, también con recuperación de presión posterior. Desventajas en el uso de la placa de orificio
Es inadecuada en la medición de fluidos con sólidos en suspensión. No conviene su uso en medición de vapores, se necesita perforar la parte inferior. El comportamiento en su uso con fluidos viscosos es errático ya que la placa se calcula para una temperatura y una viscosidad dada. Produce las mayores pérdidas de presión en comparación con otros elementos primarios de medición de flujos.
¿Cómo funciona? La exacta localización de tomas de presión antes de la placa de orificio carece relativamente de importancia, ya que la presión en esa sección es bastante constante. En todas las relaciones de diámetros D/d comerciales. Desde ½ D antes de la placa en adelante hasta la placa, la presión aumenta gradualmente en una apreciable magnitud en relaciones d/D arriba de 0.5; debajo de ese valor la diferencia de presiones es despreciable. Pero sí en la toma de alta presión, la localización no es de mayor importancia, si lo es en la toma de baja presión, ya que existe una región muy inestable después de la vena contracta que debe evitarse; es ésta la razón por la que se recomienda colocarlas para tuberías a distancias menores de 2 pulgadas de las tomas de placa. La estabilidad se restaura a 8 diámetros después de la placa pero en este punto las presiones se afectan por una rugosidad anormal en la tubería. Cuando el flujo pasa a través de la placa de orificio, disminuye su valor hasta que alcanza una área mínima que se conoce con el nombre de “vena contracta”, en las columnas sombreadas de la figura siguiente, el flujo llega con una presión estática que al pasar por el orificio, las pérdidas de energía de presión se traducen en aumentos de velocidad, en el punto de la vena contracta se obtiene el menor valor de presión que se traduce en un aumento de velocidad, en ese punto se obtiene la mayor velocidad. Más delante de la vena contracta, la presión se incrementa, se genera una pérdida de presión constante que ya no se recupera, la diferencia de presión que ocasiona la placa de orificio permite calcular el caudal, el cual es proporcional a la raíz cuadrada de la caída de presión diferencial. Cuando dicha placa se coloca en forma concéntrica dentro de una tubería, esta provoca que el flujo se contraiga de repente conforme se aproxima al orificio y después se expande de repente al diámetro total de la tubería. La corriente que fluye a través del orificio forma una vena contracta y la rápida velocidad del flujo resulta en una disminución de presión hacia abajo desde el orificio. El valor real del coeficiente de descarga C depende de la ubicación de las ramificaciones de presión, igualmente es afectado por las variaciones en la geometría de la orilla del orificio. El valor de C es mucho más bajo que el del tubo venturi o la boquilla de flujo puesto que el fluido se fuerza a realizar una contracción repentina seguida de una expansión repentina. Algunos tipos de placas orificios son los siguientes:
La concéntrica sirve para líquidos, la excéntrica para los gases donde los cambios de presión implican condensación, cuando los fluidos contienen un alto porcentaje de gases disueltos.
La gran ventaja de la placa de orificio en comparación con los otros elementos primarios de medición, es que debido a la pequeña cantidad de material y al tiempo relativamente corto de maquinado que se requiere en su manufactura, su costo llega a ser comparativamente bajo, aparte de que es fácilmente reproducible, fácil de instalar y desmontar y de que se consigue con ella un alto grado de exactitud. Además que no retiene muchas partículas suspendidas en el fluido dentro del orificio. El uso de la placa de orificio es inadecuado en la medición de fluidos con sólidos en suspensión pues estas partículas se pueden acumular en la entrada de la placa., el comportamiento en su uso con fluidos viscosos es errático pues la placa se calcula para una temperatura y una viscosidad dada y produce las mayores pérdidas de presión en comparación con los otros elementos primarios. Las mayores desventajas de este medidor son su capacidad limitada y la perdida de carga ocasionada tanto por los residuos del fluido como por las pérdidas de energía que se producen cuando se forman vórtices a la salida del orificio.