Axioma A veces se compara a los axiomas con semillas, porque de ellos surge toda la teoría de la cual son axiomas.
Un axioma es una proposición que se considera «evidente» y se acepta sin requerir demostración previa. En un sistema hipotético-deductivo es toda proposición no deducida (de otras), sino que constituye una regla general de pensamiento lógico (por oposición a los postulados).1 En lógica y matemáticas, un axioma es una premisa que, por considerarse evidente, se acepta sin demostración, como punto de partida para demostrar otras fórmulas. Tradicionalmente los axiomas se eligen de las consideradas «afirmaciones evidentes», porque permiten deducir las demás fórmulas. En lógica un postulado es una proposición no necesariamente evidente: una fórmula bien formada (planteada) de un lenguaje formal utilizada en unadeducción para llegar a una conclusión. En matemática se distinguen dos tipos de proposiciones: axiomas lógicos y postulados. La palabra axioma proviene del sustantivo griego αξιωμα, que significa «lo que parece justo» o, que se le considera evidente, sin necesidad de demostración. El término viene del verbo griego αξιοειν (axioein), que significa «valorar», que a su vez procede de αξιος (axios): «valioso» o «digno». Entre los filósofos griegos antiguos, un axioma era lo que parecía verdadero sin necesidad de prueba alguna.
Lógica Artículo principal: Lógica proposicional
La lógica del axioma es partir de una premisa calificada de verdadera por sí misma (el axioma), y de ésta inferir otras proposiciones por medio del método deductivo, de lo cual se obtienen conclusiones coherentes con el axioma. A partir de los axiomas, y de reglas de inferencia, han de deducirse todas las demás proposiciones de una teoría dada.
Axioma lógico Los axiomas son ciertas fórmulas en un lenguaje formal que son universalmente válidas, esto es fórmulas satisfechas por cualquier estructura y por cualquier función variable. En términos coloquiales son enunciados verdaderos en cualquier mundo posible, bajo cualquier interpretación posible, con cualquier asignación de valores. Comúnmente se toma como axioma un conjunto mínimo de tautologías suficientes para probar una teoría.
Matemáticas Para que todos los procedimientos matemáticos usados sean válidos se debe partir de una base
que
respalde
cada
procedimiento,
cada
paso
lógico
usado,
y
debe,
en
consecuencia, demostrarse cada afirmación no trivial. Son estas demostraciones los pilares fundamentales de toda rama de las matemáticas, ya que sin ellos puede ponerse en duda la veracidad de cualquier afirmación. Las afirmaciones a las que se hace referencia se llaman axiomas. Serán, por lo tanto, afirmaciones que se aceptan como verdaderas debido a su trivialidad, pudiendo en ocasiones ser demostradas cuando no lo son. El otro tipo de afirmaciones a las que se hace referencia diciendo: afirmación no trivial, son los teoremas, que son ya, afirmaciones no tan triviales y muchas veces poco intuitivas. Estas afirmaciones deben ser demostradas usando los axiomas u otros teoremas ya demostrados. Una consecuencia inmediata de un teorema se llamará corolario. Muchas partes de la matemática están axiomatizadas, lo que significa que existe un conjunto de axiomas de los cuales es posible deducir todas las verdades de esa parte de la matemática. Por ejemplo, de los axiomas de Peano es posible deducir todas las verdades de la aritmética (y por extensión, de otras partes de la matemática). El formalismo surgido como consecuencia de la crisis fundacional de principios del siglo XX dio lugar al llamado programa de Hilbert. Dicho programa abogaba por la formalización de diferentes ramas de las matemáticas mediante un conjunto de axiomas explícitos, en general formulados en lenguajes formales de primer orden. Eso significa que junto con los axiomas lógicos ordinarios de una teoría de primer orden se introducían símbolos extralógicos (para constantes, funciones y predicados) y ciertos axiomas matemáticos que usaban dichos signos que restringían su comportamiento. Cada teoría matemática necesita un conjunto diferente de signos extralógicos, por ejemplo la aritmética de primer orden requiere la función «siguiente» y una constante que designe al primer de los números naturales (a partir de esos dos signos nuevos una constante y una función, son definibles la suma, la multiplicación, la relación de orden «menor o igual» y todas las nociones necesarias para la aritmética). El programa de Hilbert hizo concebir la posibilidad de unas matemáticas en que la propia consistencia de axiomas escogidos fuera verificable de manera relativamente simple. Sin embargo, el teorema de incompletitud de Gödel y otros resultados mostraron la inviabilidad del programa de Hilbert para los fines con los que fue propuesto.
Limitaciones de los sistemas axiomáticos A mediados del siglo XX, Kurt Gödel demostró sus famosos teoremas de incompletitud. Estos teoremas mostraban que aunque un sistema de axiomas recursivos estuvieran bien definidos
y fueran consistentes, los sistemas axiomáticos con esos sistemas de axiomas adolecen de limitaciones graves. Es importante, notar aquí la restricción de que el sistema de axiomas sea recursivamente enumerable, es decir, que el conjunto de axiomas forme un conjunto recursivamente enumerable dada una codificación o gödelización de los mismos. Esa condición técnica se requiere ya que si el conjunto de axiomas no es recursivo entonces la teoría ni siquiera será decidible. Con esa restricción Gödel demostró, que si la teoría ite un modelo de cierta complejidad siempre hay una proposición P verdadera pero no demostrable. Gödel prueba que en cualquier sistema formal que incluya aritmética puede generarse una proposición P mediante la cual se afirme que este enunciado no es demostrable.
Sistema axiomático En lógica y matemáticas, un sistema axiomático consiste en un conjunto de axiomas que se utilizan, mediante deducciones, para demostrar teoremas. Ejemplos de sistemas axiomáticos deductivos son la geometría euclidiana compilada por Euclides en los Elementos1 y el sistema axiomático de la lógica proposicional.
Historia El primer intento se remonta a la axiomatización de los Elementos de Euclides (siglo IV-III a.C.), aplicado a la geometría plana. Euclides enuncia cinco postulados y cinco nociones comunes
(axiomas),
de
los
que
deduce
sus
teoremas geométricos.
Al
mismo
tiempo, Aristóteles aporta el primer enfoque de la lógica formal en el Órganon, recogiendo diversos axiomas de Platón y otros filósofos. En matemáticas, sin embargo, el primer intento de axiomatización llegó en 1888, cuando Richard Dedekind propuso un conjunto de axiomas sobre los números. 2 Al año siguiente,Giuseppe Peano retoma los trabajos de Dedekind y expone sus axiomas aritméticos. Gottlob Frege, en 1884, con su obra Die Grundlagen der Arithmetik y la posterior Grundsetze der Arithmetik, trata de reducir la aritmética a la lógica. Bertrand Russell en su intento de 1901 descubrió la paradoja del mismo nombre: «paradoja de Russell», y para resolverla trabajó con Alfred North Whitehead, en Principia Mathematica. En 1899, David Hilbert reformula los axiomas de la geometría, y también explica los conceptos que Euclides dejó implícitos, por
ejemplo, Euclides no dice que hay al menos tres puntos en el plano, o que hay al menos un punto en el plano que no pertenece a la línea, etc. En el Congreso celebrado en 1900, David Hilbert planteó varios problemas, entre los que incluía la demostración de la consistencia de los axiomas de las matemáticas y la axiomatización de la física. En 1931, Kurt Gödel demostró que cualquier sistema axiomático equivalente a los axiomas de Peano es incompleto y que si este sistema es consistente, no se puede utilizar para probar su consistencia (teorema de incompletitud de Gödel).
Sistemas axiomáticos formales e informales Un sistema axiomático puede tener expresados sus axiomas de manera formal o de manera informal:
Una axiomatización formal usa un lenguaje formal y en él cada axioma es una cadena finita de signos en el alfabeto del lenguaje formal, siguiendo reglas combinatorias que hacen de la secuencia una fórmula bien formada.
Una axiomatización informal usa una lengua natural formalizada y definiciones no ambiguas, los libros de matemática y otras disciplinas formales normalmente redactan los axiomas de esta manera.
Los sistemas de axiomas formales son más sencillos de estudiar y son preferibles para caracterizar las propiedades de los sistemas matemáticos. En particular iten una caracterización semántica muy clara en la teoría de modelos y sus propiedades deductivas pueden ser tratadas en la teoría de la demostración. Por el contrario, las axiomatizaciones informales sólo son útiles cuando se tiene un modelo concreto en mente y se pretenden buscar propiedades que se cumplen en el modelo.
Componentes de un sistema axiomático formal
Un
sistema
axiomático
formal
consta de los siguientes elementos:
Un alfabeto S para construir expresiones
formales
que
incluye:
Un símbolos
conjunto
de
para conectivas
lógicas, cuantificadores
Un símbolos
conjunto para
de
designar
variables
Un conjunto de símbolos para constantes (que tendrán en un modelo una interpretación fija).
Un conjunto de símbolos que serán interpretados como funciones.
Un conjunto de símbolos que serán interpretados como relaciones.
Una gramática formal que incluirá:
Reglas de buena formación, que reproducen la "morfología" del lenguaje formal.
Reglas de inferencia que permitirán deducir unas proposiciones de otras, estas reglas reproducen la "sintaxis" del lengua formal.
Un conjunto de axiomas inicial, o expresiones bien formadas son el punto de partida de cualquier deducción.
Para el conjunto de expresiones bien formadas exresadas en el lenguaje formal anterior puede definirse una S-estructura en la que a cada variable constante o cada ocurrencia libre de una variable reciba un valor dentro del modelo (es decir, las constantes y variables libres serán conjuntos preasignados de la S-estructura). Las funciones y relaciones serán definidas como funciones y relaciones matemáticas dentro de la S-estructura. Una vez definidas las constantes, variables libres, funciones y relaciones resulta trivial atribuir un significado concreto a las expresiones del lenguaje formal en la S-estructura.
Modelos para un sistema axiomático formal Si un conjunto de proposiciones (fórmulas bien formadas) de un sistema axiomático formal iten una S-estructura donde se satisfacen, entonces se dice que dicha estructura es un modelo para el conjunto de proposiciones. Un sistema de axiomas que ite un modelo es un sistema de axiomas consistente. Un sistema formal bien construido satisface "teorema de validez" que viene a afirmar que cualquier proposición deducible de los axiomas o teorema del sistema axiomático, se satisface también, en todos los modelo que sean un modelo en el que se satisfacen los axiomas. La propiedad recíproca no siempre se cumple, una proposición que se satisface en todos los modelos de una teoría no tiene porqué ser deducible del sistema de axiomas. Este último punto es ilustrado por los teoremas de incompletitud de Gödel, que viene a afirmar que una sistema formal de ciertos sistemas matemáticos con un conjunto de axiomas que satisface determinada propiedad formal (ser un recursivamente enumerables) itirá un modelo en el que algunas proposiciones serán ciertas pero no serán deducibles. Es decir, la teoría asociada al sistema axiomático formal será esencialmente incompleta.
Ejemplos La teoría de grupos es un sistema axiomático se puede basar en el siguiente conjunto de tres axiomas G1, G2 y G3: (G1) para todo x, y y z: (G2) para todo x: (G3) para todo x, existe un y tal que Este conjunto de axiomas no es único, ya que pueden ser substituidos por otros equivalentes. En teoría de grupos el asunto importante es que el conjunto de teoremas sean los mismos en dos axiomatizaciones diferentes. Eso implica que las dos clase de modelos que satisfacen los dos sistemas de axiomas coindiden.
Los tres axiomas anteriores pueden escribirse sin usar ninguna lengua natural usando sólo símbolos de una lenguaje de primer orden como: (G1) (G2) (G3) Donde f debe interpretarse como la función definida sobre GxG que da un elemento de G dando operación de grupo, xi son signos de variables (puede definirse una colección infinita numeralbe de las mismas) y c1 es una constante que requiere la teoría que se interpretará como el elemento neutro (es decir, los axiomas postulan que dicho elemento existe).
Geometría no euclidiana
Los tres tipos de geometrías homogéneas posibles, además de la geometría euclidea de curvatura nula, existen la geometría elíptica de curvatura positiva, y la geometría hiperbólica de curvatura negativa. Si se consideran geometrías no-euclídeas homogéneas entonces existe una infinidad de posibles geometrías, descritas por las variedades riemannianas generales.
Se denomina geometría no euclidiana o no euclídea, a cualquier forma de geometría cuyos postulados y propiedades difieren en algún punto de los establecidos por Euclides en su tratado Elementos. No existe un solo tipo de geometría no euclídea, sino muchos, aunque si se restringe la discusión a espacios homogéneos, en los que la curvatura del espacio es la misma en cada punto, en los que los puntos del espacio son indistinguibles pueden distinguirse tres tipos de geometrías:
La geometría euclidiana satisface los cinco postulados de Euclides y tiene curvatura cero.
La geometría hiperbólica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura negativa.
La geometría elíptica satisface sólo los cuatro primeros postulados de Euclides y tiene curvatura positiva.
Todos estos son casos particulares de geometrías riemannianas, en los que la curvatura es constante, si se ite la posibilidad de que la curvatura intrínseca de la geometría varíe de un punto a otro se tiene un caso de geometría riemanniana general, como sucede en la teoría de la relatividad general donde la gravedad causa una curvatura no homogénea en el espaciotiempo, siendo mayor la curvatura cerca de las concentraciones de masa, lo cual es percibido como un campo gravitatorio atractivo.
Historia El primer ejemplo de geometría no euclidiana fue la hiperbólica, teorizada inicialmente por Immanuel Kant, formalizada posterior e independientemente por varios autores a principios
del siglo
XIX tales
como Carl
Friedrich
Gauss, Nikolái
Lobachevski, János
Bolyai y Ferdinand Schweickard. Los desarrollos de geometrías no euclídeas se gestaron en sus comienzos con el objetivo de construir modelos explícitos en los que no se cumpliera el quinto postulado de Euclides. La geometría Euclideana había sido desarrollada por los griegos y expuesta por Euclides en la obra Los elementos. En su primera obra publicada, "Pensamientos sobre la verdadera estimación de las fuerzas vivas" (Gedanken von der wahren Schätzung der lebendigen Kräfte und Beurteilung der Beweise derer sich Herr von Leibniz und anderer Mechaniker in dieser Streitsache bedient haben) (1746), Immanuel Kant considera espacios de más de tres dimensiones y afirma: Una ciencia de todas estas posibles clases de espacio sería sin duda la empresa más elevada que un entendimiento finito podría acometer en el campo de la Geometría... Si es posible que existan extensiones con otras dimensiones, también es muy probable que Dios las haya traído a la existencia, porque sus obras tienen toda la magnitud y variedad de que son capaces.
Esas posibles geometrías que Kant entrevé son las que hoy se llaman geometrías euclidianas de dimensión mayor que 3. Por otra parte, ya desde la antigüedad se consideró que el quinto postulado del libro de Euclides no era tan evidente como los otros cuatro pues, al afirmar que ciertas rectas (las paralelas) no se cortarán al prolongarlas indefinidamente, habla de una construcción mental un tanto abstracta. Por eso durante muchos siglos se intentó sin éxito demostrarlo a partir de los otros cuatro. A principios del siglo XIX, se intentó demostrarlo por reducción al absurdo, suponiendo que es falso y tratando de obtener una contradicción. Sin embargo, lejos de llegar a un absurdo se encontró que existían geometrías coherentes diferentes de la euclídea. Se había descubierto así la primera geometría no euclídea (en concreto el primer ejemplo que se logró era una geometría llamada hiperbólica).
Geometrías de curvatura constante
Geometría hiperbólica
Modelo del disco Poincaré para la geometría hiperbólica con una teselación {3,7} de rombos truncados. Artículo principal: Geometría hiperbólica
A principios del siglo XIX, y de modo independiente, Gauss (1777-1855), Lobachevsky (17921856), János Bolyai y Ferdinand Schweickard lograron construir la geometría hiperbólica, a partir del intento de negar el quinto postulado de Euclides y tratar de obtener una contradicción. En lugar de obtener una contradicción lo que obtuvieron fue una curiosa geometría en la que los tres ángulos de un triángulo sumaban menos de 180º sexagesimales (en la geometría euclídea los ángulos de cualquier triángulo suman siempre exactamente 180º). La
naturalidad
de
esta
geometría
quedó
confirmada
a
finales
del
siglo,
cuando Beltrami demostró que la geometría hiperbólica coincide con la geometría intrínseca de cierta superficie y Klein dio la interpretación proyectiva de la geometría hiperbólica. Ambos resultados prueban que es tan consistente como la Geometría euclídea (es decir, si la geometría hiperbólica lleva a alguna contradicción, entonces la geometría euclídea también). Algunos afirman que Gauss fue el primero en considerar la posibilidad de que la geometría del Universo no fuera la euclídea. Sabiendo que en la geometría hiperbólica la suma de los ángulos de cualquier triángulo es menor que dos rectos, se dice que subió a la cima de tres montañas con un teodolito, aunque la precisión de sus instrumentos no fue suficiente para decidir la cuestión con tal experimento. Sin embargo, otros afirman que cuando escribió que
trataba de corregir los efectos de posibles curvaturas se refería a corregir el efecto de la curvatura terrestre en los estudios cartográficos que estaba realizando.
Geometría elíptica
La
esfera
es
un
modelo
de
geometría
elíptica
bidimensional,
losmeridianos resultan
ser líneas
geodésicas mientras que los paralelosson líneas de curvatura no mínima. Artículo principal: Geometría elíptica
La geometría elíptica es el segundo tipo de geometría no-euclídea homogénea, es decir, donde cualquier punto del espacio resulta indistinguible de cualquier otro. Una variedad de Riemann de curvatura positiva constante es un ejemplo de geometría elíptica. Un modelo clásico de geometría elíptica n-dimensional es la n-esfera. En la geometría elíptica las líneas geodésicas tienen un papel similar a las líneas rectas de la geometría euclídea, con algunas importanes diferencias. Si bien la mínima distancia posible entre dos puntos viene dada por una línea geodésica, que además son líneas de curvatura mínima, el quinto postulado de Euclídes no es válido para la geometría elíptica, ya que dada una "recta" de esta geometría (es decir, una línea geodésica) y un punto no contenido en la misma no se puede trazar ninguna geodésica que no corte a la primera.
Geometría euclídea Artículo principal: Geometría euclídea
La geometría euclídea es claramente un caso límite intermedio entre la geometría elíptica y la geometría hiperbólica. De hecho la geometría euclídea es una geometría de curvatura nula. Puede demostrarse que cualquier espacio geométrico o variedad de Riemann cuya curvatura es nula es localmente isométrico al espacio euclídeo y por tanto es un espacio euclídeo o idéntico a una porción del mismo.
Aspectos matemáticos Artículo principal: Espacio maximalmente simétrico
Los espacios de curvatura constante el tensor de curvatura de Riemann viene dado en componentes por la siguiente expresión:
donde
es el tensor métrico expresado en coordenadas curvilíneas cualesquiera. En tensor
de Ricci
y la curvatura escalar son proporcionales respectivamente al tensor métrico y a
la curvatura:
y donde
es la dimensión del espacio.
Otro aspecto interesante es que tanto en la geometría hiperbólica, como en la geometría elíptica homogéneas el grupo de isometría del espacio completo es un grupo de Lie de dimensión
, que coincide con la dimensión del grupo de isometría de un espacio
Euclideo de dimensión n (aunque los tres grupos son diferentes).
Geometrías de curvatura no constante
Geometría riemanniana general A propuesta de Gauss, la disertación de Riemann versó sobre la hipótesis de la Geometría. En su tesis, Riemann considera las posibles geometrías que infinitesimalmente (i.e. en regiones muy pequeñas) sean euclídeas, cuyo estudio se conoce hoy en día como geometrías riemannianas. Estas geometrías resultan en general no-homogéneas: algunas de las propiedades del espacio pueden diferir de un punto a otro, en particular el valor de la curvatura. Para el estudio de estas geometrías Riemann introdujo el formalismo del tensor de curvatura y demostró que la geometría euclídea, la geometría hiperbólica y la geometría elíptica son casos particulares de geometrías riemanninanas, caracterizadas por valores constantes del tensor de curvatura. En una geometría riemanninana general, el tensor de curvatura tendrá valores variables a lo largo de diferentes puntos de dicha geometría. Eso hace que la geometría no sea homogénea, y permite distinguir unos puntos de otros. Esto es relevante en la teoría de la relatividad general, ya que en principio es posible hacer
experimentos de medición de distancias y ángulos que permitan distinguir unos puntos del espacio de otros, tal como especifican numerosos experimentos mentales imaginados por Einstein y otros en los que un experimentador encerrado en una caja puede realizar experimentos para decidir la naturaleza del espacio-tiempo que le rodea. Finalmente un aspecto interesante de la geometría riemanniana es que si la curvatura no es constante entonces el grupo de isometría del espacio tiene dimensión estrictamente menor que
siendo
la dimensión del espacio. En concreto según la relatividad general un
espacio-tiempo con una distribución muy irregular de la materia podría tener un grupo de isometría trivial de dimensión 0.
Geometría del espacio-tiempo y teoría de la relatividad Artículo principal: Curvatura del espacio-tiempo
Basándose en la ideas y resultados de Riemann, hacia 1920 Einstein aborda en su Teoría de la Relatividad general la cuestión de la estructura geométrica del Universo. En ella muestra cómo la geometría del espacio-tiempo tiene curvatura, que es precisamente lo que se observa como campo gravitatorio, y cómo, bajo la acción de la gravedad, los cuerpos siguen las líneas más rectas posibles dentro de dicha geometría, líneas que se denominan geodésicas. Además, la Ecuación de Einstein afirma que para cada observador, la curvatura media del espacio coincide, salvo un factor constante, con la densidad observada, dando cumplimiento así a la fantástica visión de Gauss: la geometría desentrañada por los griegos es la estructura infinitesimal del espacio; al generalizar dicha estructura geométrica, tiene curvatura.