Jesus Zavala Gómez
Radio Atómico. El radio atómico está totalmente definido como la mitad de la distancia entre dos núcleos de dos átomos adyacentes. Diferentes propiedades físicas, densidad, punto de fusión, punto de ebullición, están relacionadas con el tamaño de los átomos. Identifica la distancia que existe entre el núcleo y el orbital más externo de un átomo. Por medio del radio atómico, es posible determinar el tamaño del átomo.
Propiedades.
En un grupo cualquiera, el radio atómico aumenta de arriba a abajo con la cantidad de niveles de energía. Al ser mayor el nivel de energía, el radio atómico es mayor...
En los periodos, el radio atómico aumenta de derecha a izquierda, ya que al ir hacia la izquierda, Z disminuye en una unidad al pasar de un elemento a otro, es decir hay un electrón menos en la misma capa de valencia. La carga nuclear, Z disminuye a medida que nos desplazamos hacia la izquierda
El radio atómico puede ser covalente o metálico. La distancia entre núcleos de átomos "vecinos" en una molécula es la suma de sus radios covalentes, mientras que el radio metálico es la mitad de la distancia entre núcleos de átomos "vecinos" en cristales metálicos. Usualmente, por radio atómico se ha de entender radio covalente.
Afinidad Electrónica.
Jesus Zavala Gómez
La afinidad electrónica (AE) o electroafinidad se define como la energía liberada cuando un átomo gaseoso neutro en su estado fundamental (en su menor nivel de energía) captura un electrón y forma un ion mono negativo: . Dado que se trata de energía liberada, pues normalmente al insertar un electrón en un átomo predomina la fuerza atractiva del núcleo, tiene signo negativo. En los casos en los que la energía sea absorbida, cuando ganan las fuerzas de repulsión, tendrán signo positivo; AE se expresa comúnmente en el Sistema Internacional de Unidades, en kJ·mol1 . También podemos recurrir al proceso contrario para determinar la primera afinidad electrónica, ya que sería la energía consumida en arrancar un electrón a la especie aniónica mononegativa en estado gaseoso de un determinado elemento; evidentemente la entalpía correspondiente AE tiene signo negativo, salvo para los gases nobles y metales alcalinotérreos. Este proceso equivale al de la energía de ionización de un átomo, por lo que la AE sería por este formalismo la energía de ionización de orden cero. Esta propiedad nos sirve para prever qué elementos generarán con facilidad especies aniónicas estables, aunque no hay que relegar otros factores: tipo de contraión, estado sólido, ligando-disolución.
La afinidad electrónica de un elemento (AE), puede definirse como: La cantidad de energía que se absorbe cuando se añade un electrón a un átomo gaseoso aislado para formar un ión de carga 1 La convención es asignar un valor positivo cuando se absorbe energía y un valor negativo cuando se libera y caso todos los elementos no tienen afinidad por un electrón adicional, por tanto, su afinidad electrónica es igual a cero. La afinidad electrónica de los elementos He y Cloro puede representarse como: He(g) + e- x He- (g) AE = 0 kj/mol Cl(g) + e- → Cl- (g) + 349 kj
AE = -349 kj/mol
La primera ecuación nos dice que el Helio no itirá un electrón. La segunda ecuación nos dice que cuando una mol de átomo de cloro gaseoso gana un electrón para formar iones cloruro gaseoso, se libera (exotérmico) 349 kj de energía. La afinidad electrónica comprende la adición de un electrón a un átomo gaseoso neutro. Así como el proceso por el cual un átomo neutro X gana un electrón. X(g) + e- →X-(g) (AE) no es el inverso del proceso de ionización X+(g) + e- →X(g) ( inverso de EI1)
Jesus Zavala Gómez
Energía De Ionización. La energía de ionización, potencial de ionización o EI es la energía necesaria para separar un electrón en su estado fundamental de un átomo, de un elemento en estado de gas.1 La reacción puede expresarse de la siguiente forma: . Siendo los átomos en estado gaseoso de un determinado elemento químico; energía de ionización y un electrón.
, la
Esta energía corresponde a la primera ionización. El segundo potencial de ionización representa la energía precisa para sustraer el segundo electrón; este segundo potencial de ionización es siempre mayor que el primero, pues el volumen de un ion positivo es menor que el del átomo y la fuerza electrostática atractiva que soporta este segundo electrón es mayor en el ion positivo que en el átomo, ya que se conserva la misma carga nuclear. El potencial o energía de ionización se expresa en electronvoltios, julios o en kilojulios por mol (kJ/mol). 1 eV = 1,6 × 10-19 C × 1 V = 1,6 × 10-19 J En los elementos de una misma familia o grupo, el potencial de ionización disminuye a medida que aumenta el número atómico, es decir, de arriba abajo. Sin embargo, el aumento no es continuo, pues en el caso del berilio y el nitrógeno se obtienen valores más altos que lo que podía esperarse por comparación con los otros elementos del mismo periodo. Este aumento se debe a la estabilidad que presentan las configuraciones s 2 y s2 p3, respectivamente. La energía de ionización más elevada corresponde a los gases nobles, ya que su configuración electrónica es la más estable, y por tanto habrá que proporcionar más energía para arrancar los electrones.
Jesus Zavala Gómez
Electro Negatividad. La electronegatividad es una medida de la capacidad de un átomo (o de manera menos frecuente de un grupo funcional) para atraer a los electrones, cuando forma un enlace químico en una molécula. También debemos considerar la distribución de densidad electrónica alrededor de un átomo determinado frente a otros distintos, tanto en una especie molecular como en sistemas o especies no moleculares. El flúor es el elemento con más electronegatividad, el Francio es el elemento con menos electronegatividad. La electronegatividad de un átomo determinado está afectada fundamentalmente por dos magnitudes: su masa atómica y la distancia promedio de los electrones de valencia con respecto al núcleo atómico. Esta propiedad se ha podido correlacionar con otras propiedades atómicas y moleculares. Fue Linus Pauling el investigador que propuso esta magnitud por primera vez en el año 1932, como un desarrollo más de su teoría del enlace de valencia. La electronegatividad no se puede medir experimentalmente de manera directa como, por ejemplo, la energía de ionización, pero se puede determinar de manera indirecta efectuando cálculos a partir de otras propiedades atómicas o moleculares. Se han propuesto distintos métodos para su determinación y aunque hay pequeñas diferencias entre los resultados obtenidos todos los métodos muestran la misma tendencia periódica entre los elementos. El procedimiento de cálculo más común es el inicialmente propuesto por Pauling. El resultado obtenido mediante este procedimiento es un número adimensional que se incluye dentro de la escala de Pauling. Esta escala varía entre 0,7 para el elemento menos electronegativo y 4,0 para el mayor. Es interesante señalar que la electronegatividad no es estrictamente una propiedad atómica, pues se refiere a un átomo dentro de una molécula 3 y, por tanto, puede variar ligeramente cuando varía el "entorno" 4 de un mismo átomo en distintos enlaces de distintas moléculas. La propiedad equivalente de la electronegatividad para un átomo aislado sería la afinidad electrónica o electroafinidad. Dos átomos con electronegatividades muy diferentes forman un enlace iónico. Pares de átomos con diferencias pequeñas de electronegatividad forman enlaces covalentes polares con la carga negativa en el átomo de mayor electronegatividad.
Jesus Zavala Gómez
Regla Del Octeto. La regla del octeto, enunciada en 1916 por Gilbert Newton Lewis, Fisicoquímico norteamericano, dice que la tendencia de los iones de los elementos de sistema es completar sus últimos niveles de energía con una cantidad de 8 electrones, de tal forma que adquiere una configuración muy estable. Esta configuración es semejante a la de un gas noble,1 los elementos ubicados al extremo derecho de la tabla periódica. Los gases nobles son elementos electroquímicamente estables, ya que cumplen con la estructura de Lewis, son inertes, es decir que es muy difícil que reaccionen con algún otro elemento. Esta regla es aplicable para la creación de enlaces entre los átomos, la naturaleza de estos enlaces determinará el comportamiento y las propiedades de las moléculas. Estas propiedades dependerán por tanto del tipo de enlace, del número de enlaces por átomo, y de las fuerzas intermoleculares. Existen diferentes tipos de enlace químico, basados todos ellos, como se ha explicado antes en la estabilidad especial de la configuración electrónica de los gases nobles, tendiendo a rodearse de ocho electrones en su nivel más externo. Este octeto electrónico puede ser adquirido por un átomo de diferentes maneras:
Enlace iónico Enlace covalente Enlace metálico Enlaces intermoleculares Enlace coordinado
Es importante saber, que la regla del octeto es una regla práctica aproximada que presenta numerosas excepciones pero que sirve para predecir el comportamiento de muchas sustancias.
Jesus Zavala Gómez
Nombre: Jesus Zavala Gómez No Control: 15580533 Grupo: 1-B Carrera: Ing. Mecatrónica Materia: Química