l'rimcra edición: mayo de 2003 Primera edic ión en nísl ica: ma}'º de 20 10
Qucd~tn
rig.uros;irnc ntc
prohibi~'l.S.
sin la auto rizac ión esc rita de los titttlnrcs del CO/J)'rig/11. b{~jo las
sanciones cstablcci(l:LS en 1:·1s leyes. I:' rro(lucción IOt:.ll o p:1rci::il de cs1a obnl por cu.rdql1icr medio o proce
Diseño
ac1ncr. S.A. © 2002 by S1c1>hcn llawking © 20 1Ode la presente edición para Esp:tñ::i y 1\nléric:.i: CRfTICA. S. L .. Diagonal , 662-664, 08034 Bt1rcclo na
c-n1ail: ec..litori¡il@ed -cl'itica.es htt p:J/\V\ \ ' \\'.cd-critica .es ISB N: 978-84-9892-094-9 D6sitt) legal: l1t1prc-s o y c-ncuodcrnado en Espnñn por
(Barcelo na)
Copyrighlcd maleria
NOTA A ESTA EDICIÓN David Jou ha traducido la Introducció n a esta obra, así como los Agradeci mientos y las presentaciones a la «Vida y obra» de Copérnico, Ga li leo, Newton y Einstein . Suya es también la vers ió n española q ue actualiza la a no tación de la o bra de Copérnico. Gali leo y Newton. Respecto a los textos de Jos cientílicos aqu í reunidos, nuestra ed ición parte de traducciones d irectas de sus respectivos origina les, según se deta lla a continuación:
Sobre las re11olucio11es de los orbes celestes. de Nicolás Copérnico, se editó por vez primera en 1543 baj o e l tílUIO De rei,ol11tio11ib11s orbi11111 coelestium. La versión castellana que reproducimos se debe a Carlos IVlínguez y Mercedes Testa! y fue publi cada con a nterioridad por Editora Nacional en Miidrid, 1982. La primera impresión del Diálogo sobre dos 1111p1•as ciencias, de Galileo Gal ile i, a cargo de Lo uis Elzevier a pareció en Leiden en 1638 bajo e l 1ftulo Discorsi I' Di111ostrazior1t! Ma1/re111t1tic/11?i111or110 a c/111?1111011e scit111ze. Nuc.stm edición sigue la <1uc, elaborada
por Carlos Solís y Javier Sádaba, fue publ icada por Editora Nacional (Consideracio11es y demostraciones matemáticas sobre dos 1111e1•as ciencias, Madrid, 1976). De Las armonías del 1111111do, de Johannes Kepler, se ha seleccionado aquí el Libro V. La obra fue impresa en 16 19 bajo el título Harmonices Mwuli. La traducción castellana de l origi na l latino ha s ido llevada a cabo por vez primera por José Luis J\ni ntcgu i Tamayo. Los Principios matemáticos de la filosofía 11a111ral, de Isaac Newton, fueron publicados e n 1687 bajo e l título Philosophicae nat11ralis principia mathemalica. La traducción cas1c lla na reproduce aquí Ja e laborada por Eloy Rada García y publicada por Alianza (Nladrid, 1987). De la obra de Albert Einstein se han seleccionado siete e nsayos de la colección de artículos pu blicada en alemán bajo e l título Das RelativiUitspriuzip y recogida en The Pri11ciplesofRelativiTy: A Collectio11 ofOrigi11al Pape1-s 011 the SpecialTheoryofRelalii>ity, obra que reú ne los trabajos de H.A. Lore nz, A. Einstein, H . Minkowski y H. Weyl (Teubner, Leipzig, 1922). La traducción castellana ha sido llevada a cabo por Javier G:ircía Sanz. Los dos primeros artícu los reproducen Ja publicada previamente por Crítica en 200 1. Los cinco restantes eran inéditos en castellano hasta hoy. Sus respectivos títulos originales, así como sus datos editoriales, pueden hall:irse en nota a pie de página al inicio de cada uno de ellos.
Copyrightcd maleria
AGRADECIMIENTOS Este libro no habría sido posible sin la ayuda de mucha geme de talento que prestó su colaboración en di versas etapas del desarrollo de la obra. Entre los que merecen una grati tud especial se encuentran M ichae l Ros in , consultor de Runn ing Press, G il King, y la señora K aren Sime, ayudante del profesor Stephen Hawki ng. Tam bién debemos expresar nuestra gmti tud a diversos pasados y presentes del eq uipo de Running Press: Cario de V ito, Kathleen Greczy lo, Kelly Pennick, Bill Jones y Debornh Grnndinetti.
Copyrighlcd maleria
INTRODUCCIÓN «Si he logrado ver más kjos. ha sido porque he subido a hombros de gigantes», escribió Isaac Newton a Ro ben Hooke en 1676. Aunque se refería a sus descubrimientos e n óptica más que a sus trabaj os, más impon antes, sobre la gmvitación y las leyes del movimiento, el co111e11 tario de Newto n re fl eja adecuadamente cómo la cienc ia. y de hecho e l conj unto de la civilizac ió n. co nsis te en una serie de pequeños progresos. cada uno de los cua les se a lza sobre los alcanzados a nte riormente. Éste es e l 1e111a de este volumen fascina nte, que uti liza textos originales pam trazar la evolución de nuestra imagen del linnamento desde la revoluciona ria propuesta de Nicolás Copérnico de que la Tierra g ira a lrededor del Sol a la no menos revolucio naria de Albert Einstein de que el espac io y el tie mpo son curvados y de formHdos por la masa y la e nergía. Es una h is toria impresionante, porque tanto Copérnico como Einstein han contribuido a cambiar profunda111cntc la 111a11cra de ver nuestro lu gar c11 el ordc11 cós111ico. Pasó nucs1 ro lugar de Jlrivi-
leg io en el cen1ro del Universo, pasaro n la etern idad y la certidumbre, y pasaro n el espac io y el tiempo absolutos, sustituidos po r láminas elásticas. No sorprende que ambas teorías chocaran con una encarnizada oposic ió n: la Inqu isic ión en e l caso de la teoría copcrnicana y el naz ismo en el caso de la re latividad . Actual111c11tc, tcr1dc111os a n1c11osprcciar co1110 i11gcnua la a11tigua ''isió11del t111i\1crso de Aristó-
teles y Pto lomeo, e n la cua l la Tierra estaba en e l centro del un iverso y e l Sol giraba a s u a lrededor. Sin embargo, no deberíamos clesdeílar demasiado su modelo. que no era e n a bso luto estúpido. Incorporaba la idea aristoté lica de que la Tie rra es una esfera y no una placa p lana, y resu !taba razonablemente preciso en s u func ión principal, la de predecir las posiciones aparentes de los c uerpos celestes en el fi rmamento, con finalidades astro lógicas. De hecho, resultaba casi tan preciso como la herética sugerenc ia formu lada por Copé nlico e n 1543 de que la Tien-a y los planetas giran en órbitas circulares alrededor del So l. Gal ileo encontró convincente la propuesta de Copérn ico, no porque concordara mejor con las o bservaciones de las posiciones p lanetarias, sino por s u simplicidad y ele gancia, que contras taba n con los complicados epiciclos de l modelo p to lemaico. En los Diálogos sobre dos nuevas cie11cias los personajes de Ga lileo , Salviati y Sagredo pre senta ban argumentos persuasivos a favor de la teoría de Copémico. Pese a ello, su tercer personaje, Simplicio, aún podía defender a Aristó teles y Ptolomeo y sostener que en realidad la 11erra estaba en reposo y e l Sol g u-aba a su alrededor.
Copyrighlcd maleria
10
A HOMBROS DE GIGANTES
De hecho, hasta que los trabajos de Kler no dieron mayo r prec is ión al modelo heliocéntrico y Newton no formuló las leyes del movim iento. e l modelo geocéntrico no perd ió toda su credibilidad. Ello supuso un gran cambio en nuestra visión del Universo: si 110 nos halltlT110S en el centro. ¿tiene nt1cstro.1 cx.istc11cia ;_1lgu na irnport;111cia? ¿Por q11é Dios o las leyes de la naturaleza deben preocuparse por lo que ocurre en la tercera roca que gira alrededor del Sol. que es donde nos dejó Copém ico? Los científicos modernos han ido mucho más allá que Copérn ico en su búsq ueda de una descripción de l universo en que el l10111brc (en el o.1 ntiguo sc11tido e:111 tcrior t1 lo polític;;t1t1c11tc correcto) no j ug;_1r;:1
ningún papel. Aunque esta ma nera de abordar el problema ha conseguido descubrir leyes objetivas i111¡>crsono.1lcs c1uc rigen el universo . no 11;_1 cxplic•1do. al 1ncnos por al1r.1ra. por qué el u11 i\1crso es co1r10 es c11 l11ge:1r de ser u110
rescribird de fortlla ún ica el es-
tado del universo, la intensidad de la gravitación, la masa y la carga de l e lectró n. y muchas otras constantes por el est ilo . Sin e mbargo, muchas características del universo (como por ej emplo el hecho de <1ue estemos en el tercer plane ta, e n vez de en e l segundo o e n e l cuarto) pa recen arbitrarias y acc identales más que ser predicciones de una ecuación maestra. Muc ha gente (incluido yo mismo) cree que la aparición de un uni verso tan complej o y estructurado req uiere invocar e l llamado principio antrópico, que nos vue lve a s illlar en la posic ión central que hemos tenido la modestia de rechazar desde la época de Copérnico. El princ ipio antrópico se basa en e l hecho evidente de que no estaríamos preguntándonos por la naturaleza del Universo si éste no hubiera co ntenido estrellas, pla netas y com puestos químicos estables, entre otros prerreq uisitos de vida (¿ inte ligente'?) tal como la que conocemos. Si la teoría definiti va hic iera una predicción única para e l estado y e l contenido del Universo , sería una coinc idencia muy nota ble que este estado se ha llarn e n el dim inuto s ubconjunto de estados comp:u ib les con la vida. Sin embargo, la obra del últ imo pensador de este volume n, A lbert Einstein, abre una nueva posibilidad . Einste in desempe~ó un papel m uy importante en el desarrollo de la
-
1corín cu3ntica, scg1í11 la cual 1111sistc111a110 ric11c una. sola l1istoria, co1110 ncostun1bramos
a pensar, s ino muchas hi storias posibles, cada una con una cierta proba bilidad. Ein stein, además, fue casi e l único responsable de la teoría general de la relatividad, en la que e l espacio y el tiempo se curvan y se convierten en entidades d inám ica s. Esto significa que est:'.ln sujetos a la teoría cuántica, y que el m ismo Un iverso tiene todas las fonnas y todas las hi storias posibles. La mayoría de ellas sería completamente inadecuada para e l desarrollo de la vida, pero unas pocas reúnen todas las condiciones necesarias para ello. No importa que estos pocos uni versos tengan una probabilidad mu y baja respecto a los demás: los universos s in vida no tendrían a nad ie q ue los observam. Es suficicme que haya al me nos una historia en que se d esarrolle la vida, de la cual nosotros somos una evidencia, aunque no lo seamos de inteligencia. Newton dijo que había subido a hombros de gigantes. Pero tal como este volumen ilustra muy bie n, nuestra comprensión no avanza tan sólo edificando le nta y continuamente a partir de los trabajos anterio res. Algunas veces, como ocurrió con Copérnico o con Einstein, tenemos que hacer un salto inte lectual a una nueva visión de l mundo. Quizá Newton debería haber dic ho «Usé hombros de gigantes com o trampolín».
Copyrighlcd maleria
Nicolás Copér11ico ( 147 3-1 543)
VI DA Y OBRA Nicolás Copérnico, c lé rigo y matemático polaco, es considerado genera lmente como el fundador de la astronomía moderna. Este honor le es a tribuido porque fue e l primero en llegar a la conclusión de que los p la netas y e l So l no giraban alrededor de la Tierra. Ciertamente, especu laciones referentes a un universo he liocéntrico (centrado en el Sol) existfon ya desde la época de Aristarco (fallecido hacia e l 230 :1.C.), pero la idea no fue exam inada seriame nte antes de Copérnico. Aun así, para compre nder las contribuciones de Copérn ico es importante tene r presentes las implicaciones re lig iosas y c ultumles de este descubrim iento científico en su época. Hacia e l siglo 1v a.c., e l pensador y filósofo griego Aristóte les (382-322 a.C.) ideó un sistema planetario e n su libro Sobre los cielos (De cae/o), y concluyó que como la sombra de la Tie rra sobre la Luna durante los eclipses siempre es redonda, e l mundo es esfé rico en vez de p la no. También dedujo esta fonna redo nda de la Tierra a pa rt ir de la observación de q ue, cuando m irarnos a lejarse un velero en el mar, a mes desaparece por e l horizon te e l casco que las velas. En la visión geocéntrica de Aristóieles, la Tierra estaba e n reposo y los p laneias Mercurio, Venus, ~larte, Júp iter y Sa turno, además de la Lu na y e l Sol, describían órbitas c irculares a su a lrededor. A ristóteles creía tamb ié n que las e strellas es ta ban fijadas a la esfera celestial, y su idea del tamaño de l un iverso atribuía a e stas estrellas fijas una d istancia no mucho mayo r que la órbita de Saturno. Creía en movimientos perfectamente ci rc ulares, y tenía buenos mo tivos para ercer que la Tierra estaba en reposo. Una p iedra que cae desde una torre lo hace vertical mente, e n vez de desviarse hacia el oeste, como hubiera sido de esperar si la Tierra g irara de oeste a este (Aristóteles no consideró q ue la p iedra pud iera partici par de la rotación de la Tierra). En un intento de combina r la física con la metafísica, Ari stóte les propuso su teoría del «primer motor», que suponía que una fuerza mística más allá de las estrellas tijas producía los movim ien tos c irculares que observamos. Este modelo de universo fue aceptado y abrazado por los teólogos, q ue interpretaron a menudo los primeros motores como á ngeles, y la visión
Copyrghled ma'cria
12
A HOMBROS DE GIGANTES
de Aristó teles duró muchos s iglos. Muchos estudiosos modernos creen que la acepta ción un iversal de esta teoría por parte de las au toridades relig iosas di licu ltó e l progreso ele la ciencia. )'U que poner en ducl41 lt1s 1c.orí::.1s ::.1ristotélic¡1s era po11cr en cntrcdicl10 l::.t ¡¡utoridad de la propi¡1 iglesia.
C inco s ig los tras la muerte de Aristóteles. un egipcio llamado C laudia Ptolomco (87150 d .C.) propuso un modelo de universo q ue predecía con mayo r precisió n los movimientos y las acciones de las esferas en e l firmamento . Tal como Aris tóte les, Ptolomco crcí
epiciclos ( un círculo en que el p laneta se mueve y cuyo centro se desp laza s imu lt<Íneamente a lo largo de un c írculo de radio mayor). Para lograrlo . supuso la Tierm ligeramente separada del cent ro del universo y llamó «cquiintc» a este nuevo centro (un punto i1l1agi nario que lc ayudab:.t a tcne;:r c11 c:11cnta los 1no,•ir11it:11tos 1)Ja11etari os obst:rv0:1blcs).
Ajustando convenientemente los tamaíios de los círculos, Pto lo meo logró predecir los movimientos de los cuerpos ce lestes. La cristiandad tuvo pocos pro blemas co n el modelo geocé ntrico pto lemaico, que dejaba espacio en e l universo, más a llá de las estrel las fijas, para acomodar un cielo y un inlie rno , de manera que la Ig lesia adoptó este modelo de l unive rso como una verdad establecida. La imagen aristo télica y ptolemaica del cosmos rei nó, con pocas modilicaciones signilicatÍ\"
Copyrightcd maleria
NICOLÁS COPÉRNICO
13
Tms recibir el gmdo de doc tor en derecho canónico, Copérnico ejerció la medic ina en la corle e pi scopal de Heils berg. donde vivía su tío . La reale7,a y los altos clérigos requería n sus servicios médicos. pero Copérnico dedicó la mayor pa rle de su liempo al servicio de los pobres . En 1503 regresó a Polonia y se tmsladó al palacio episcopa l de s u tío e n Lidzbark Wa11n isnk i. All í. se ocupó de los asuntos inistrativos de la d iócesis y de hacer de asesor de s u tío. Tras el fal lecim iento de és te en 15 12 . Copérnico se desplazó definitivamente a f'muenburg y hubiera dedicado el resto de su vida a l servicio eclesiástico. 11cro el estudioso en lllt1tc111;lt ict1s. 111cdicin~' )' tcologít1 <1uc l1abít1 c11 él
es taba tan sólo a l inicio del trabaj o que le harfo famoso. En mai-¿o de 151 3. Copérnico adquirió ochocien tos bloques de piedra y un barril de cal pard co 11sl ruir t111a torre de obscr\'<.tción. en la cut'tl ul ili zó i11stru111c11tos ;:1stro11ómi· cos como c uadrantes. ¡mralácticos y astrola bios pnm observar e l Sol. la Luna y las es-
trellas. El año siguiente. e scribió un breve Comentario sobre las teorías de los movimientos de los objetos celestes a partir de sus disposicio11es (De hypothesib11s 111011111111 coell'stium a se co11stit111is commentarioltts), pero rehusó publicar e l manuscri to y sólo lo hizo c ircu la r d iscretamente e ntre unos pocos am igos de confianza. El Co111e11tario fue un primer inte nto d e propo ner una teoría astronómica en que la Tierra se mueve y e l Sol permanece en re poso. Copérnico no estaba satisfecho con el sistema astro nóm ico aris1otélico-ptolemaico que había dominado Occ ide n1e dura nte sig los. Opinaba que el cen1ro de la Tierra no era el centro del un iverso, si no tan sólo el cen1ro de la órbirn de la Luna. Copérnico había llegado a la conc lusión de que las perturbaciones aparentes e n los movimientos observables de los planetas resullaban de la pro pia ro tación de la Tierrn alrededor de s u eje y de su desplazam ie nto a lo largo de su órbita. «Giramos a lrededor del Sol», co nc luyó e n s u Come111ario, «como todos los demás pla ne tas.» A pesar de las espec ulaciones de Arisrnrco sobre un universo heliocén trico, ya en el siglo 111 a.c., los teólogos y los in1electuales se sentían más a g usto con una teoría geo cé111rica. Jlrc111i sa que nt111ca fue puesta scrin111cntc c11 tela de juic io. Prudc111c111c11tc.
Copérnico se abstu vo de desvelar sus opi niones e n público y prefirió ir desarro llando en silc11cio stts idc:ls, cfcct11a11do cálculos 111i11uciosos y traza11do sofisticados diagra· mas, y evitó que s us teorías circularan fuera de un selec10 c írcu lo de a misrndcs. Cuando , en 1514, e l papa León X requ irió a l obispo Paolo de Fossombrone que pid iera a Copérnico s u o pinión sobre la refonna del calendario ecles iástico, el a strónomo polaco replicó q ue el conocim iento de los movimientos del So l y de la Tierra co n respecto a la long itud del año era insuficien1e para poder ser tenido en cucnla en una refonna. El reto debió preocupar a Copérnico, sin embargo. ya que pos1criormente escribió a l papa Paulo 111, el que encargó a IVtiguel Angel que pinrnra la capi lla Sixlina, a lgunas observacio11cs rele\1n111cs que sirvicro11 J>nrn establecer Jos fu11da111c11tos del cale11d:irio grcgo·
riano setenta a!los despué s. Au n así, Copérnico temía exponerse a las iras del púb lico y de la Iglesia, y pasó varios años trabajando e n privado para corregir y ampliar el Co111e11wrio. El resultado fue Sobre las n~1·olucio11es de los orbes cele.Hes (D e revolurio11ib11s orbium coelesrium) que completó en 1530, pero cuya publicación re trasó durante trece años. El riesgo de una co ndena eclesi:íslica no em, sin embargo, la única mzón de sus dudas respeclO de la publicación, sino que era un perfeccionista y consideraba que sus observaciones debían ser verificadas y revisadas una y o tra vez. Co ntinuó e nseñando los principios de su teoría planelaria, incluso en presencia del papa Clemente VII, que apro bó sus trabajos. En 1536 , Clemente le pidió fonnalmente que pub licara sus teorías. pero fue necesario
Copyrighlcd maleria
14
A HOMBROS DE GIGANTES
que un an tiguo alumno de veintici nco años, el alemán Georg .foachim Rhcticus, que dejó su cátedra de ma temáticas en \Vittemberg para poder estudiar con Copérnico. persuadiera a su maestro a que publicara De revol11tio11ib11s. En 1540. Rhct icus colaboró en la edición de la obra y c11trcgó el rl1a11t1scrito ;1 un impresor lutcr..1no de Nurc111bcrg. da11do ttsí co111icnzo tl la rc\•olt1ció11 copcr11ic<.111a. Cuando De 1-e1•0/11rio11iln1s apareció en 1543, fue atacado por teó logos protesta ntes que 111antcnían q11c 11n 11ni,1crso hel iocéntrico iba contra la Biblia. Argii ía11 que lc.1s tcop
rías de Copérnico podrían hacer que la gente creyera que eran una simple pieza de un orden natural y no los d ueños de la naturaleza. ni el centro a lrededo r del cual se ordena toda ella. Deb ido a esta oposición c lerical. y quizá tamb ién por la incredul idad general que suscitaba un universo que no fuem geocénlrico. entre 1543 y 1600 menos de una decena de científicos aceptaron la teoría copernicana. Adcm¡ís, Copén1 ico no hizo nada por resolver el mayor problema con que se enfrentaba cualquier s islcma en que la Tie rra girara alrededor de su eje (y o rbilara alrededor del Sol). a saber. por qué los cuerpos terrestres permanecen sobre la Tierra que gira. La respuesta fue propuesta por Giorda no Bruno, un cientílico italiano, copernicano dec lar
tcto inmed ia to sobre los estudios astronómicos modernos. En De revo/11rio11ib11s, Copérnico no pro puso en realidad un sistema he liocéntrico, sino más bien un sistema heliostát ico. Consideró que e l Sol no estaba exactamcn1c e n e l ccn1ro del universo. sino 1a n sólo pró ximo al centro, para poder dar razó n de las variaciones observadas en la retrogresió n y e l brillo . Sostenía que la Tierra describfa cada día un g iro completo a lrededor de su eje y que daba una vuel1a a l Sol cada a11o. En la primera de las seis secciones del libro, se opuso al modelo pto lemaico, que situaba lodos los cuerpos ccles1es en órbita al rededor de la tierra, y escab leció e l orden he liocéntrico correcto: Mercurio. Venus, la Tierra, Marte, Júpiter y Saturno (los seis planetas conocidos en aquel tiempo). En la segunda secc ió n, utilizó las matemáticas (es decir, epiciclos y equamcs) para exp licar los movimientos de las es1rellas y los p la netas, y razonó que el movimiento del sol coincidía con e l de la tie rra. La tercera sección proporciona una explicación matemática de la precesión de Jos equ inoccios. que Copérnico atribuye a la rotación de la Tierra alrededor de s u cje. Las secciones restantes de De revol11rionib11s están dedicadas n los mov im ientos de los planetas y de la luna. Copérnico fue el primero que situó correctamente Venus y Nlercu rio, y estableció con notable precisión el orden y la d istancia de los p lanetas conocidos. Consideró estos dos pla netas (Venus y Mercurio) como los m1ís próximos al Sol, y observó que giran más nípidamente , y e n e l interior de la órbita de la Tierm. Antes de Copérn ico, se creía que el So l era o tro p la neta. Situar e l Sol en el centro virtual del sistema p lanetario fue el punto de partida de la revolución copernicana. Al apartar la Tierra del centro del universo, donde se suponía que anclaba todos los c uerpos celestes, Copémico se vio obligado a preguntarse por las teorías de la gravedad .
Copyrighlcd maleria
15
NICOLÁS COPÉRNICO
Las ex plicaciones precopernicanas de la gravitación habían imaginado un único centro de gravedad (la Tierra), pero Copérnico a rg uyó que cada cue rpo celeste podría te ner st1s propit1s c ualidades gn1vitncion'-tlcs y sosttl \'O que. en c.ad¡1 uno de e llos. los objetos pesados tcr1dían h;lcia su centro. Est~:l ''isió11 co11d11jo fi 11(1l111cn tc (\ la te-orín de ltt g r<.1vit;.1ción u11 i\'crs:.1J , pero s11 irnpacto 110 f11c i 111l1cdiato.
En 1543. Co pérnico sufrió una paráli sis del lado derecho y se fue debili tando física y mc nla lmcntc. El declarado perfeccion ista que cm no tu Yo o tm opción que a ba ndonar e l contro l de su manuscrito. De re110/11tio11ibus. en las últimas etapas dt: impres ión. Co nfió el 111 :.ln11scrito a su a l 11111 110 . Georg Rhctic11s. pero c.ua11clo éslc se \1 io obligado a dejar N urc1nbcrg. el 1na11uscrito ca)'Ó c11 rl1anos del teólogo lu tcrd110 Anclrct:lS Osi:.1 11dcr. Éste. CS)Jt:ra11do ílJJac.iguar a los polrtidi:trios de la tcorÍtl gc:.océntrica. i ntrodujo algt1nas tlltt:rac ioncs s in e l conocim ie nto y consentim ie nto de Co pérnit:o: introdujo la palabm «hipó tesis» en la portada, borró párrJ fos importantes y a ñad ió frases que di luía n t:I im pacto y la certeza de la obm. St: d ice qut: Copérnico rt:ci bió un ejemplar de s u libro im preso
en Fra uenburg, e n su lecho de muerte, s in darse c uenta de las revisiones de Osia nder. Sus ideas permanecieron en una re la tiva oscuridad durante casi c ie n a ños, pero el sig lo XVII vio como gente de la ta lla de Ga lileo Galile i, Johannes Ke pler e Isaac Newton construían teorías de universos he liocéntricos, aparcando definitivame nte las ideas aristotél icas. Muchos han escrito sobre el modesto sacerdote po laco que cambió nuestra ma ne ra de ver e l uni verso, pero puede que sea .lohann \Volfgang von Goethe, e l gran escritor y c ie nt ífico alemán, quien más elocue ntemente ha escrito sobre las contribuc iones de Copérnico: De tocias l:is opiniones )' clescubrin1ien1os, ninguna clcbe haber ejercido J11ayor efecto sobre el espíritu humano que la doctrina copcrnicana. Apenas el mundo había sido considerado
como redondo y completo en sí mismo, cuando se Je pidió que renunciara al tremendo privilegio e.le ser el cenln:> del universo. Qu i7...1 nuncn se ha}1a hecho un:l petición t~ln exigente a Ja hu111;.1nidad. )'•:l que. tll ;.1d111ilirla. tantas cosas se de.~\'(111ecían c11 hu1110 y niebla. ¿Qué se hizo del Edén, nucstr0 mundo de inocencia. piedad y poesía?: ¿qué se hizo del testimonio de Jos sentidos. de las convicciones de i1nn fe poético-rel.igJos:i? No sorprende que sus conten1poráncos rehusaran perder todo esto y presentaran toda Ja resistencia posible a una doctrina que autorizab.;.1 y exigía de sus con\'ersos una liberlad de n1ir..1s )' una grandeza de pens::ul1iento desconocidas. 11i tan siquiera soña
JOllANN \VOLFGANG VON Go rrn m
Copyrightcd maleria
Copyrighled material
SOBRE LAS REVOLUCIONES DE LOS ORBES CELESTES
/
INTRODUCCION AL LECTOR SOBRE LAS HIPÓTESIS DE ESTA OBRA 1 Divulgada ya la fama acerca de la novedad de las hip61esis de es1a obra. que considera que la T ierr;i se mueve y que el So l es1á inmóvil en el cen1ro del uni verso, no me extraíla que al gunos erudi1os se hayan ofendido veheme111emente y consideren que no se deben m od i fi car las disciplinas liberales cons1i1Uidas correc1amente ya hace 1iempo. Pero si quieren ponderar la cucs1i6n con exac1itucl, enco111rarán que el au101· de esta obra no ha comeliclo nada por l o que merezca ser reprend ido. Pues es propio del aslrónomo calcular la hi storia de los movimientos celestes con una labordi ligenle y dics1m. Y además concebir y configl1rar las causttS de es los 1l10\ri 111ientos, o sus l1i1>ótesis, c11ando ¡>or 111cclio de 11ingún proceso racio11al 1>uede ª''eriguar lt1s ,·erdaderas causas de el los. Y con 1ales supt1estos puede11 calcularse correcmmente dichos movimientos a partir de los principios de la geo mc1ría. 1:ir110 mimndo hacia el futuro com o hacia el pasado. Ambas cosas ha esiablecido este aUJor de modo lllU)' no1able. Y no es necesario que esms hipó1esis sean verdaderas, ni siquiera que sean verosímiles, sino que se bas1a con que mues1ren un cálculo coincideme con las observac iones. a no ser que alguien sea tnn ignoranie de la geometría o de Ja ó pl ica que tenga por verosímil el e1Jiciclo de Venus. o crea que ésa es In causa por la que precede unas veces al Sol y 01rns le sigue en cunrenla grados o mr.s. ¿Quién no advierte, supues10 es10. q ue necesariamente se sigue que el diáme1ro de la es1relln en el perigeo es más de cumro veces mayo r, y su cuerpo más de dieciséis veces mayor de lo que a1Jarece en el apogeo, a lo que. sin embargo, se opone la experiencia de cualqu ier edad?2 También en es1a disciplina hay cosas no menos absurdas o que en este m omento no es necesario exam inar. Es1á suficien1. Se l'fcc. que este prólogo. atribuido inici:.llrncntc a Co1>i.'rnico. fue escrito en rc~1l idad por 1\ndrcas Osiandcr. un tcóJogo lutcrn.no )' amigo de Copérnico. que "io De revolutionibus en la prcns..1. 2. P1olonlco hncc que Venus .se 1nucva en un epiciclo la razón de cuyo r..ldio al r.l·
dio un1adas por Osi:indcr. Adcrnás. se h.allóquc, si el ¡>lancta esiaha sobre el CJ)iciclo. la posición rnedia del Sol a¡xi· rccí:t :11ine:•d.1 con EPA. Por lo 1:1nto, dad.is las r:1zoncs <&el epiciclo y
Copyrighlcd maleria
18
A HOMBROS DE GIGANTES
1emen1e claro que este arle no conoce com pleta y absolurnmenle las causas de los movi mientos aparen les desiguales. Y si al suponer algunas, y ciertamente piensa muchísimas. en modo a lguno s uponga que puede persuadir a alguien [en que son verdad). sino tan sólo para establecer correctamente el cálculo. Pero ofreciéndose vru·ias hipótesis sobre uno solo y el mismo movim iento (como la excentricidad y el epicic lo en el caso del movimiento de l Sol) el astrónomo tomará la que con mucho sea más füc il de comprender. Quizá el fi lósofo busque más la verosim ilitud. pero ninguno de los dos comprenderá o 1rctns111itirá 11adc.1cierto.a 110 ser que le 11:..ty:..t sido rc\rcJo1do por la cli\•inich1d. Por lo t:..1nto. pcrttlilt:Ull os c111c lt:t1nbié11 cst:..ts nuevas l1ipótcsis se dc11 a conocer c11trc l;;ts antigtJas. no
como 111<\s verosím il e--;. sino porque son al mismo tiempo irnb lcs y fáciles y porque ~•port<.tn un gr..tn tesoro de sapientísi111as observacio nes. Y no espere nad ie. c11 lo q11c res~
pecta a las hipótesis. algo cierto de Ja astronomía. pues no puedc proporcionarlo; para que no salga de esta disciplina más es túpido de lo que cnlr6, si toma como verdad lo imaginado pam otro uso. Adiós.
PREFACIO Y DEDICATORIA AL PAPA PAULO III Santísimo Padre, puedo estimar suficien1emen1e lo que sucederá en cuanto a lgunos aprecien, en estos li bros míos, que he escrito acerca de las revoluciones de las esferas del mundo, que atribuyo al globo de Ja Tierra a lgunos movimientos y clamarán para dcsaprobarme por ial opinión. Pues no me sat isfacen hasta tal punto mis o piniones, como para no apreciar Jo que otros juzguen de ellas. Y aunque sé que los pensamientos del hombre filósofo cs1án lejos del juicio del vu lgo, sobre iodo porque su a fá n es buscar la verdad e n todas las cosas, en cuanto esto le ha sido penn ilido por Dios a la razón humana; sin e mba rgo, considero que debe huirse de las opiniones extrañas que se apartan de Jo j usto. Y así, al pensar yo conmigo mismo, cuán absu rdo esiimaríim el ciKpóaµa [esta cantinela] aque llos que, por el juicio de muchos siglos, conocieran la opinión confin11c1da de que la Tierra inmóv il está colocada en medio del c ie lo como su cemro, si yo. por el comrario, asegurara que la Tierra se mueve, entonces largo tiempo dudé e n mi interior, si dar'' la luz mis comentarios escritos sobre la demostración de ese movimiemo o si, por e l comrario, sería suficieme seguir e l ejemplo de los pitagóricos y de a lgunos otros, que no por escrito, sino orahnenie, so lía n tn1smi1ir los misterios de s u fi losofía únicameme a a migos y próximos, co mo testifica Lysis en su carin a Hiparco. Pero a mí me parece que no hicieron esto, como juzga n a lgunos, por un c ieno recelo a comunicar sus doctrinas, sino para que asumos tan bel los, invesligados con mucho esmdio por los grandes hombres, no fueran despreciados por quienes les da pereza e l dedicar algún trabajo a las letras, excepto a lo lucrativo, o si, siendo excitados por las exhortaciones y el ejemplo de otros hacia el esmdio liberal de la fi losofía, por la esmpidez de su ingenio se movieran entre Jos filósofos como Jos zánganos emre las abejas. Considerando, pues, conm igo mismo estas cosas, el desprecio que yo debía temer a causa de la novedad y absurdo de mi op inió n, casi me había empujado a imcrrumpir la obra ya o rganizada. Pero los amigos me hicieron cambiar de opi nión. a m í que durame lan lo liempo dudaba y me resistía. Entre ellos fue e l primero Nicolás Schonberg. cardenal de Capua, célebre en todo género de saber. Próximo a él estuvo mi muy querido e insigne Ticdemann Giese, obispo ele Culm, estudiosísimo de las letras sagradas, así como tam bién de todo buen saber. Éste me exhortó mucha< veces, y a ñadiendo con frecuenc ia los reproches,
Copyrightcd maleria
NICOLÁS COPÉRNICO
19
insistió para que publicara este libro y le dejara sali r a la luz. pues re len ido por mí había estado en silencio, no sólo nueve aíios. sino ya cuatro veces nueve. A lo mismo me im pt1lsaron otros 111uchos \ aro11cs c111i11c.ntcs y doctos,cxhortándo111c ¡>ara que no me. ncgo_t· 1
111durante111ás tic1npo. a c:ausC:l del rn icdo concebido. tt J>rcscnt¡lr 1nl obra pt1ra la c.on1ú 11
util idad de los estudiosos de las matemáticas. Decían que. cuanto más absurda pareciera 01l1ora ;:i 1nuchos esta doctri11;.1111ía sobre el n10, 1 i111icnto de la Tierra. 1e:111ta 1nás <.tdmira· ció11 y fa\'Or tendría dcs11ués de q11c, por In cdició11de 111 is co111c11ta.rios. \1 icr.1n lc\•ant'--tdn
la niebla del absu rdo por las c larísimas demostracio nes. En consecuenc ia. convencido por aquellas 1>crsuasio11cs y co11 csla cs1)cra11z:1. pcr1nití a 111is t1rnigos cr11c l1 icicsc11 In ed ic ión de la obra que me habían pedido tanto tiempo. Y qu iz:.1. Vuestra Santi clad 110 t.1cl1t1irtlr.'i tt.111lo el <1uc ll'lt:. l1ay.:1 (tlrcvido c.1 sc1car a lt:l
lu z estas lucubraciones. después de tomarme mnto trab;tjo en elaborarlas. como e l que no haya dudado e n poner por escrito mis pensam ientos sobre d movi miento de la Tierra. Pero lo que más esperará oír de mí cs. qué me pudo haber venido a la mente para que. contra la opinión recibida de los matemáticos e incluso con tra e l sentido comú n, me haya a trevido a imagi nar algún mov imiento de la Tierra . Y así, no qu ie ro ocu ltar a Vuestra Santidad, que ninguna otra cosa me ha movido a meditar sobre otra relación [estructura] para deducir los movimientos de las es feras del mundo, sino e l hecho de comprender que los matemáticos no están de acuerdo con aquellas investigaciones. Primero, porque estaban tan inseguros sobre e l movimiento del Sol y de la Luna que no podía demostrar ni observar la magnillld constante de la revolución a nual. Después, porque i1I establecer los movimientos, no sólo de aquéllos, sino tam bién de las otras c inco estrellas errantes, no utilizan los mismos principios y su puestos, ni las mismas demostraciones en las revo luciones y movimientos aparentes. Pu es unos uti lizan sólo c írculos homocéntricos, otros, excéntricos y epicic los, con los que no cons ig uen p le na me nte lo buscado. Pues los que confían en los homocéntricos, mmque hayan demostrado a lgunos movimientos diversos de los que pueden componerse, no pud iero n deducir de e llo nada ta n seguro que respond iera sin duda a los fenómenos. Mas los que pensaro11 cr1 los cxcé11tricos, au11quc c1l grart ¡lartc J)nrccfa11 t1nbcr rcst1clto Jos 1110 \ri111ic111os
aparentes por medio de cálculos congruentes con ellos, sin embargo itieron entre tanto muchas cosas que parecen contravenir los primeros p rincipios acerca de la regularidad de l movimicnro. Tampoco pudiero n hallar o calcular partiendo de ellos lo más imponanrc, esto es, la form a del mundo y la simetría exacta de sus partes, sino que les s ucedió como si alguien tomase de diversos lugares manos, pies, cabeza y otros a uté nticamente óptimos, pero no reprcsenrmivos en relación a un solo cuerpo, no correspondiéndose entre sí, de modo que con ellos se compondría más un monstruo que un hom bre. Y así, en e l proceso de demostración q ue llaman «método» olvidaron algo de lo necesario, o itieron algo ajeno, o que no pertenece en modo alguno al tema. Y esto no les hubiese sucedido en modo alguno, si hubieran seguido principios seguros. Pues si las h ipótesis supuestas por e llos no fueron falsas, todo lo que d e ellas se deduce se podría verificar sin lugar a dudas. Y aunque lo que a hora d igo es oscuro, en su lugar se hará claro. En consecuencia, reflexionando largo tiempo conmigo mismo sobre esta incertidumbre de las matemáticas transmitidas para calcu lar los movimientos de las esferas del mundo, comenzó a e nojanne que a los filósofos, que en otras c uestiones han estud iado tan cuidadosamente las cosas mc\s minuciosas de ese orbe, no les constara ningún cálculo seguro sobre los movimientos de In máquina del mundo, constn1ida para nosotros
Copyrightcd maleria
20
A HOMBROS DE GIGANTES
po r el mejor y más reg ula r a rtífice de todos. Por lo cual, me esforcé en releer los libros de todos los filósofos que pudiera tene r, para indaga r s i a lg uno había opinado q ue los 1no,1 i1nicnlos de las esferas cra11 distin tos a los que st11Joncn qt1icncs c11scñ::i11 1nntc1nc.l· 1ict1s c11 las csc11cl:.1s. Y cnco11tré c11 Cicerón que N iccto ft1c el pri1ncro en opi11ar que la
T ierra se 1110\1 Í;1. Dcsp11és. t¿1111 bié.11 en [>l11t;1rco encontré que hc.1bío1 algunos otros de esa opinión. CU)'ttS pc.1labras . pt1r<:1 que todos las tcngt1n claras. 1n c pareció bien lrt1nscribir:
Algunos piensan que la Ticrru permanece quieta, en cambio Filolaoel Pitagórico dice que se n1ue-vc e.n un círculo oblicuo alrededor del fuego. de-la misma manera que el Sol y Ja Luna. 1-ler~1clicles el del Ponlo )' Ecfa1110 el Pi10-1g6rico piensan que la Tie1Ta se n1ueve pero no con tr.ts-
lació11, si110 c(>1110 un11rucd41. ulredcd<Jr de su ))f<JJ>Í(J centro. desde el ocaso J1asta el orto.1
En consecue ncia, a provec ha ndo esa ocasió n e mpecé yo tamb ién a pensar sobre la mov ilidad de la Tierra. Y au nq ue la opi nión parecía abs urda, si n embargo, pues to que sabía c1ue a o tros se les había co ncedido tal libertad an tes q ue a mí, de modo qu e representaban a lgunos c írculos para demostrar los fe nó menos de los astros, es timé que fáci lmente se me permiti ría experimen tar, si, s upues to algú n movim iento de la Tierra, podrían e ncontra rse en la re voluc ión de las órbitas celestes d emostraciones más fi rmes que lo eran las de aqué llos. Y yo. s upuestos así los movimientos que más a bajo e n la obra atribuyo a la Tierra. cncor11ré con L1 11a la.rg;,_1 )' <.1 bt111dantc obscr\1aci6n que, si se rclaciona11 los 111ovi 111icntos
de los dem3s a stros errantes co n e l mov imiento c ircular de la Tierra . y s i los movi111ic111os se c:llcL1la11 co 11 res1lccto 01 1~1 rcvoluci6 n de c:1da as1ro. 110 só lo de nl1í se siguen
los fenómenos de aquéllos, s ino que también el orden y magnitud de los astros y de 10 das lns órlli tns, e i11cluso el cielo 111is1110 , se 1lo11c11 cr1 concx i6 11; de l:tl 111odo qL1C c11 ningunn ¡1arte puede ca111hiarse 11:-1da, si11 la co11fusi611 de las 01ras ()flrtes y de lodo el uni -
verso. De ahí ta mbién, que haya seguido e n el 1ra nscurso de la obra c s1e o rde n, de modo que en e l libro prime ro describiré todas las posic iones d e las ó rbitas con los movim ien tos que le atribuyo a la Tierra, de modo que ese libro contenga como la constitución conuín del universo. Después, en los restantes libros, re laciono los movimientos de los demás astros y de todas las órbi tas co n la movilidad de la Tierra , para que de a hí pueda deducirse e n qué medida los movi mientos y apariencias ele los demás astros y ó rbitas pueden salvarse, si se re lacionan con e l mo vim ie nto de la Tierra . No dudo que los ingeniosos y doctos matemáticos concordarán conmigo, si, como la fi losofía exige en primer lugar, quisieran conocer y exp licar, no superfic ia lmente s ino con profundidad, aquello que para la de mostración de estas cosas ha sido realizado por mí e n esta obra . Pe ro, para que tanto los doctos como los ignorantes por igua l vieran que yo no evitaba el j uicio de nad ie, preferí dedicar estas lucubraciones a Vuestra Santidad antes que a cualquier otro , puesto que ta mbién en este remotísimo rincón de la Tierra, donde yo vivo, sois considerado como e minentísimo por la dignidad de vuestra orden y tan1bién por vuestro amo r a todas las letras y a las matemáticas, de modo que fücilmente con vuestra autoridad y j uic io podéis reprim ir las mordedu ras de los calumniadores, a unque está en el proverb io que no hay re medio contra la mo rdedura de un s icofante.. Si por casualidad hay µ a Ta
.óy o• [cha rlntanesj que, a un s ie ndo igno rantes de todas las matemáticas, pre sumen de un j uicio sobre ellas por a lgún pasaje de las Escritul. De placiti.< plrilosoplron1111, U 1, 13.
Copyrightcd maleria
21
NICOLÁS COPÉRNICO
ras, n1aligna111c11tc distorsionado de su se11tido, se atrcviel'a11 a recl1azar )' atacar esta es-
tructuración m ín, no hago e n a bsoluto caso de ellos, hasta e l punto de que condenaré s u j uicio como temerario. Pues no es desconocido que Lactancio . por o tra parte célebre escritor. a unque matemático mediocre, habló puerilmente de la forma de la Tierra, al reírse de los que trt1ns111iticro 11 qt1c. la Ticrrt1 tic11c for111a de. globo. Y así. no dcbc- 1J~1rc·
cernos sorprendente a los e stud iosos. si a hora otros de e sa clase se ríen de nosol ros. Las 111atcn1áticc1s se cscribc11 para los 1n::llc1náticos. a los qt1c cs1os trabajos 11ucstros. si 111 i OtJ i11ión 110 rllc c11g~•ña. les pttrcccrrtn que aJJOrt:.111 (tlgo a l~l rc1>úblic:.1 cclcs iástic.a , cuyo
principado tiene ahora Vues tra Sa111 idad. Pues así. no hace mucho, bajo León X. en el co11ci lio de Lctr
eclesiástico. todo quedó incl<:c-iso ú11ict1111e 11 tc. <.1 c~Lt1 sa de c1uc las 111C'1g 11ilt1des de los años y de los 111éSt!S ) los mo vim ienros del So l y de la Luna aú n no se consideraban suficie111emen!e medidos. Desde ese mo mento dediqué mi án imo a observa r estas cosas con más cuidado, estimu lado por e l muy prec laro varón Pablo , obispo de r ossombronc, que e nto nces estaba presente e n estas de liberaciones. Pero lo que he propo rcionado en esra materia, lo dejo a l juic io princ ipalme nte de Vuestra Santidad y de todos los demás sabios matemáticos: y para que 110 parezca a Vuestra Sa nridad que prome!o más utilidad en la obra de la que puedo presentar, paso a hora a lo cons truido. 1
Copyrighlcd maleria
Copyrighled material
LIBRO PRIMER0 1 Entre los muchos y variados esiudios sobre las le tras y las artes, con los que se vivifi can las inteligencias de los hombres, pienso que principalmente ha n de abarcarse y seguirse con el mayor a fán las q ue versan sobre las cosas más bellas y más d ignas del saber. Ta les son las que tratan de las maravillosas rnvo luciones del mu ndo y del c urso de los astros, de las magnitu des, de las d istancias, del o rto y del ocaso, y de las causas de todo lo que aparece en el c ielo y que lina lme nte expliciin la forma total. Pues ¿qué hay más hermoso que e l cie lo, que contiene toda la be lleza? Incluso los propios nombres lo declaran : Cielo y Nlundo ; éste, co n denominación de pureza y o rnamen to, aquél con apelación a lo adornado. Al mismo , por su extraordinaria exce le ncia, muchísimos filósofos le lla maro n d ios visible. De ahí, que si la dignidad de las a rtes se est ima por la rnaieria que tmtan, será sin duda importantísima, esta que unos lla nrnn astronomía, otros astrología, y muchos entre los antig uos la consumación de las matemáticas. Ella es la cabeza de las demás artes noble s, la m:1s digna del hombre libre, y se apoya e n casi todas las ramas de las nrntemáticas. Aritmética, geome tría, óptica, geodesia, mecánica,)' si hay a lguna otra mds, todas se d irigen a ella. Y, siendo pro pio de todas las buenas a rtes el apartar de los vicios y d irigi r la mente de los hombres hacia lo mejor, e lla puede pro porcio nar esto más abundantemente y con increíble placer del esp íritu. Pues ¿quién. adhiriéndose a lo que ve constituido en óptimo orden, d irigido por la providenc ia divina, m ediante Ja asidua contemplación y c ierto hábito hacia estas cosas, no es llamado hacia lo mejor y ira a l artífice de todo, e n el que está la felicidad y el bien completo? Pues no e n vano aquel salmista d ivino se confesaría: de lec1ado por e l trabajo de d ios y arrebatado por las obras de s us manos; si no es porque, por medio de estas cosas como por una espec ie de vehículo, fuéramos llevados a la comemp lació n del sumo bien. Pla tón advirtió con mucho acierto, cuá nta utilidad y aclo1110 comporta a la Repúbli ca (pasando por a lto las innumera bles ventajas para los particulares) . Éste, en e l séptimo libro de las Leyes, considera q ue debe extenderse [su estudio], para que con su ayu da se ma me nga viva y vig ila nte la c iudad, respecto del orden en los días, los tie mpos d ivididos en meses y años con \'istn a las solemnidades y también a los sacrificios; y si (d ice) a lguien niega su necesidad para e l hombre que desee aprender cualquiera de las 1. Los tres 1>árrafos inlro
Copyrighlcd maleria
24
A HOMBROS DE GIGANTES
más alias doctr inas, pensará con gran estupidez: y cs1ima q ue falta mucho, para que cualquiera pueda llegar a ser o ser llamado divino, si no tiene el conocimienlo necesario del Sol. ni ele la L una. ni de los dcm(ts asiros. Pero esta c.icncia. n1ás di,•in¡t qt1c l1u1nan:.1. que invcstigt1 tc1nas de gn1ndísi1na ttltu ra. no carece de d ificullaclcs. sobre lodo respcc lo a sus principios y supuestos. ;i los que los griegos l la111,tn <
->. y \reinos que rt1ucl1os de los C(UC intcnt¡1ron tratarlos estuvieron en desacuerdo y n i siquiera util izaro n los m ismos cálculos. Adcm:ís. el curso ele los astros y la revolución ele las estrellas no ha pod ido dc li nirsc con un número ex;ic10. 11i reducirse :.1 un conocir11 ic11to J)crfcclo . si 110 es con 1l1 ucl10 tictnpo y con 1t1 uch:.1s obscr\•acio11cs rcalizad:.1s de :.t11tc111ano. con las c1uc. co1110 ya diré. se 1n111Slll ilc '-l le:1 ~>os
lcrio ridacl de mano en mano. Pues. aunque C. Ptolomco el A lejandrino. que destaca ampliamente sobre Jos demás por su ndmirable ingenio y escrupulosidad. llevó toda esta cie11ci a 01 su 111{is alto grado 111t:dian1e obscr\rac io11cs. d t1rJ1ltt! r1t:ls dt: cucllrocic11Los aiíos, de manera que parecía no faltar nada que él no hubiera abordado. Sin embargo. vemos que muchas cosas no coinciden con aquellos movim ientos que debían segu irse de su enseíianza. ni con algunos o tros mo vi mientos, descubiertos m;\s tarde, aún no conoc idos para é l. D e ahí que, incluso Plutarco, cuando habla del giro anual del Sol , dice: «H asta ahora, el movimiento de Jos astros ha vencido Ja peric ia de Jos matemát icos». En efecto, tomando como ej emp lo el año mismo, considero bien claro que han sido tan diversas las opiniones, hasta tal pu nto que muchos han desesperado de poder encontrar un cálculo seguro sobre él. A sí, favoreciéndome Dios, si n el q ue nada podemos, voy a intentar investigar con más amplitud sobre estas cosas respecto a las 0 1111s estrellas, poseyendo más detalles que apoyarán nuestra doctrina, a causa del intervalo más amplio de tiempo entre nosotros y los autores de este arte que nos precedieron, con cuyos ha llazgos 1endremos que comparar Jos que han sido wmbién descubiertos de nuevo por nosotros. Confieso que voy a exponer much¡¡s cosas de d iferente manera que 111is Jl rcdcccsorcs, n1111quc co11vicr1c apoyarse crl ellos, pucsro que por pri 111crn vez nbricro11 la puerta c11 l:l i11vcstigació1) de csras cosas.
l. EL MUNDO ES ESFÉRICO En pr imer lugar. hemos de señalar que el mundo es esférico. sea porque es Ja fo nna m'1s perfecta de 1odas. sin comparación alguna. to1almente indivisa. sea porque es Ja m'1s capaz de todas las liguras, Ja que m'1s conviene para comp render todas las cosas y consen "arlas. sea tamb ién porque las dem(Js panes separadas del mundo (me reliero al Sol, a la Luna y a las estrellas) aparecen con tal forma . sea porque con esta forma 1odas J:-1s cosas tic11de11 ~1 1>crfcccio11arse, co1110 aparece c1'1 las got11s de agtt:l y c11 los de1nois cuerpos líquidos, ya q ue tienden a limitarse por sí mi smos. parJ que nad ie po nga en duda Ja atribució n de !a l form a a los cuerpos divinos.
2. LA TIERRA TAMBIÉN ES ESFÉRICA Tam bién Ja Tierra es esférica, puesto que por cualquier parle se apoya en su centro. Sin embargo, Ja esfericidad no aparece i nmediatam ente como pcrfec1a por Ja gran eleva-
Copyrighlcd maleria
25
NICOLÁS COPÉRNICO
ción de los montes y el descenso de los valles, a pesar de lo cual modifican muy poco la redondez total de Ja Tierra. Lo cual se clarifica de Ja siguien te manera. Pues hacia el norte. 1n;:1rchando desde ct1alquicr pc1rtc. el \'érti cc de la rc\:olu ción diurna se clc\ 1a poco a poco. descendiendo el otro por el contrario otro lanto, y muchas cslrcllas alrededor del septentrión parecen no ponerse y algunas hacia el punto ausiral parecen no
salir más. Así. en ltal ia no se ve Canopus. visible desde Egipto. Y en llalia se ve la última estrella de Pluvius. que no conoce nucslra región de clima más frío. Por el contrario. par:;t los que l llt1rcl1a11 h ¡-1c; i¡1 el su r se ele''ªº <1q11él las, 111icntr.1s que dcscic11dcn las que pé:trc:1 11osotros están clc\rad'-IS. Adc111cls. lt1s inclinttcioncs de los polos c.0 11 rclació11 a cs11acios tncdidos de Ja Ticrri.t están en cu..1lc1uicr parte c11 Jc11nis111c.11azón, lo q11c c11 11 i11 · gu11.:1 otr(t íigura s11ccclc, 11ada 111fts que c11 la esférica. De donclc es cvidc111c c1uc la Tic· rr.·1 ta111bié11 está inclui<:h.l entre ,rért ices )', por tanto, es esférica. t ln}' ql1c <.lilt'1dir ta111·
bién, que los habita111es oc oriellle no perciben los eclipses vespertinos del So l y de la Luna. ni los que habilan hacia el ocaso los matutinos; con respecto a los ecl ipses medios, aquéllos los ven más tarde y éstos más prorllo. También se deduce porque las aguas surcadas por los naveganies tienen esta misma figura: puesto que quienes no distinguen la tierra desde Ja nave, la con1emplan desde la parte alla del mástil, desde Ja tierra, a Jos que permanecen en Ja orill a, les parece que desciende poco a poco al avanzar Ja nave, hasta que finalmente se oculia, como poniéndose. Consia también que las aguas. íl uiclas por naturale1.a, se di rigen siempre hacia abajo, Jo mismo que Ja tierra, y no se elevan desde el Ji1oral hacia posiciones anteriores, más de Jo que su convexidad permite. Por Jo cual es aceptado, que la tierra es 1an10 más alla, cuan10 emerge sobre el océano.
3. DE CÓMO LA TIERRA JUNTO CON EL AGUA FORMA UN GLOBO Así pues, el océano que rodea a ést:l [Ja lierra] ex lendiendo sus mares por todas partes, llena sus abismos más profundos. Por tanio convenía que hubiera menos agua que tierra, para que el agua no absorbiera toda la lierra (dirigiéndose ambas por su gravedad hacia el mismo cemro) y con el fin de que quedaran algunas partes de lierra e islas perceptibles aquí y allá para salvación de los seres vivos. Pues ¿qué es el propio continen te y Ja superfic ie de Ja Tierra sino una isla mayor que las demás? Y no es necesario escuchar a algunos de Jos peripacéticos, quienes consideraron que coda el agua es diez veces mayor que coda la lierra. acepmndo Ja conjecura de que en Ja transmutación de Jos elementos de una parce de cierra resu lt:in diez de agua; y dicen que la tierra sobresale un poco, porque, siendo cavernosa, no se equilibra por todas partes según su gravedad, y que uno es el centro de gravedad y ocro el de magnirnd. Pero se equh·ocan por su igno rancia del arte de In gco1netría, al no saber que el ngun 110 puede ser n1a} or ni siete \ re . ces, para que alguna parte de Ja tierra estu viera seca, a no ser que la Tierra abandonara el centro de gravedad y dejara el Jugar a las aguas como más pesadas que ella. Puesto que las esferas se relacionan enlrc sí como Jos cubos ele sus diámecros. En consecuencia, si para siete paites de agua hubiera una octava parte de tierra, su diámetro no podría ser mayor que Ja dislancia desde el centro [el radio) a Ja circunferencia de las aguas. 1
Tanto 111cnos, que e l ngua sea diez \reces 111ayor.
Copyrighlcd maleria
26
A HOMBROS DE GIGANTES
Q ue no ex ista di ferencia alguna entre el centro de gravedad de la T ierra y el de su magnitud. puede aceptarse, porque la convexidad de la ti erra que emerge del océano no au111cnta sic111prc de una 1nanc111 continu<.1, c11 <.:<.1so contrario rcchaz¡1rít1 lo 111ñs posible las aguas 111ari11as y no pc11nitiría en modo :.1lg11no que irrutnpicran los 111arcs in ternos y los go lfos t~tn extensos. Adc111fis. a partir del litoral dc.I océttno 110 cc-si1rít1 de c.1u 111c11tt1r la profundidad del abismo . de modo que ni is la alguna. ni escollo. ni ningún terreno. scr\1 iría de obstáculo :.t los que nt1vcgando e:1,·c.111~,n alcjá11closc. Y ahont consta. que entre el mur de los egipcios y el golfo Ar(ibigo hay apenas m;ís de quince estadios, en medio casi de la superficie de la Tierra. Y, por otra parte, Pto lo meo, en su Cosmografía. ex· l iende la l icrra habitable hasla el círculo med io. dejando lo rcstanle de la tierra como desconoc ido. donde los más modernos mi adieron Catay y o tras regiones mn pl ísimas hasta los LX gmdos de longiltld, de modo que la tierra es habi tada ya en una longitud mayo r, que la ocupada por el resto de l océano. Si además se aiiaden a estas tierras las islas encontradas en nuestro tiempo por los pr íncipes de España y Portugal, y sobre todo América, llamada así por su desc ubr idor, el jefe de las naves, a la que por su magnitud aún desconoc ida la consideran otra superficie d e la T ierra [«orbis terrarum »], además de las muchas islas desconocidas antes, por la que tampoco sorprendería que hubiera antípodas o antícto nas. Pues el cálcu lo geomélrico obliga a pensar q ue la propia A mé· r ica es diametralmente opuesta a la I nd ia del Ganges por su si tuac ió n. Po r todas estas cosas, j uzgo sufic ientemente claro que la l ierra y el agua conj unta· mente se apoyan en un solo centro de gravedad , y q ue éste no es otro que el centro de magnitud de la Tierra, la cual siendo más pesada, llena con agua sus partes deprim idas; y, por tamo, q ue hay menor cantidad de agua en compamción con la de tierra, aunque en la superfi cie aparezca más cubierta de agua. Sin duda, es necesario que la tierra con las aguas que la rodean tenga la fig ura que muestra su som bra: pues produce que l¡l Luna se ec lipse proyectando círcu los perfectos. En consecuencia, no es plana como opin:tro n Empédocles y Anaxfmencs, ni semej ante a un tambor, como opinó L euc ipo. ni escafo ide como Heráclito, ni cóncava de otro modo, como Dcmócri to, ni ci líndrica . como A naximandro, ni es infinita en su parte in ferio r ten iendo debaj o una gran cantidad de rafees, como Jenó l'ancs, sino perfectamente redonda, como opinan Jos fi lósofos.
4. EL MOVIMIENTO DE LOS CUERPOS CELESTES ES REGULAR Y CIRCULAR, PERPETUO O COMPUESTO POR MOV IMIENTOS CIRCULARES Después de esto, recordiiremos que el movim iento de los cuerpos celestes es ci rcular. Pues la movilidad de Ja esfera es girar en un círcu lo, expresando mediante el mismo acto st1 for111a. en ur1 cuerpo si11111Ji císi1110, clo11de 110 se pttcdc cl1co11trar ni pri 11ci¡Jio 11i fin . ni
distingu ir uno de otro, m ientras (Ja esfera) pasa hacia los m ismos puntos vo lviendo ha· cia los mismos. Si n embargo, hay varios movim ientos a causa de la mu ltitud de órbitas. '
1. El «Círculo orbi1ah>(orbi,f ) es el círculo 1náxin10 :-;obre el cu:ll el pl:ineta se mue\'e en su esfeta (spllne -
ra). Copérnico utiliza la palabra orbis. que designa ori,ginariamcntc un círculo mtls que una esfera porque. si la esfera ptM:dc st~r ncc.'Csaria par.t 1:1explicación 1nccánica del 1novin1icnto. s61o el círculo C!' ncccs.:uio para la explicación matemática.
Copyrightcd maleria
NICOLÁS COPÉRNICO
27
La más conocida de todas es la revol uc ión d iaria , a la que los griegos ll aman vuxlhí µepov , esto es, un espacio de tiempo de un día y una noche. Por eso se piensa que todo e l mundo se desliza desde el o rto hacia el ocaso, excepto la Ti erra. Esla revolución se e ntiende como la medida comú n de lodos los movi mientos, puesto que med imos el tiempo sobre todo por el número de días. Después vemos o tras revoluciones como en senl ido contra rio, esto es, del ocaso al orto, me re fiero a la de l Sol, la de la Luna y de las c inco estre llas errantes. Así, el Sol nos pro po rcio na e l año, la Luna los meses, los períodos de tie mpo más divu lgados; así, los otros cinco p lanetas reali1.an cada uno s u propio cic lo. Sin e mbargo, las di ferenc ias son múltiples: primero, porque no gimn alrededor de los mismos polos a través de los que se desenvuel ve aquel prime r movimiento. av;:mzando por la oblicuidad de la eclíptica; después, porque en su prop io cic lo no parecen moverse con regularidad. Pues el Sol y 1:-• lu11;-, se obscrvar1 a lo !;;irgo de:. su curso un:ts \rec.es lentos. otras \·cccs 1nás rá pidos. Pero percibimos tamb ién que las otras c inco estrell as crmntes retroceden a veces
)' después se dc1 icne11. Y mientras e l Sol avanza constante y directamente por s u camino, aquél los andan errantes ele diversos modos, vagando unas veces hacia e l sur, otras hacia e l norte: por ello so11 l la111ados <<Jlla11e1as~>. Añádase ta111biér1 el qtte u11as \1eccs se prese11ta11111ás cercanos a la Tierra y se llama n perigeos [que están en su perigeo]. o tras miis a lejados y se
les dice apogeos [que están e n su a pogeo). Y no menos conv iene confesar que Jos mo vimientos son c ircu la res, o compuestos por muchos círcu los, porque mantienen las irregu laridades según una ley lija y con re novac io nes consta ntes: lo que no podría suceder s i no fuer.in circulares. Pu es el c írculo es el único que puede volver a recorre r e l cam ino recorrido. Como, por ej emp lo, e l So l, con su movim ien to compuesto de círculos, nos trae de nuevo, una vez y o tra, la irreg ularidad de los d ías y las noches y las cuatro estaciones del año, en lo cua l se reconocen varios movim ie ntos: puesto que no puede s uceder que un cuerpo celeste si mple se mueva des igualmente en una sola ó rbita. Pues esto podríH acontecer, o por la inconsrnnc ia de la fuerza motriz, bien por una cimsa ex terior o por s u propia natum leza , o por las modificaciones del c uerpo que g ira. Pero como repug nan n la inteligencia unü y o tras, y es indigno pensar que tal cosa se produce en los c ue rpos que est{ln const ituidos por una o rdenación ópt ima, es consecuente it ir que sus movimientos regu lares nos aparecen como irregulares, bien por los dife.rentes polos de sus círc ulos, o también porque la T ierra no está en el centro de Jos círculos, a través de los cuales ellos se mueven, y para nosotros que contemplamos desde la T ierra e l tránsi to de estos astros, nos sucede que, por sus irregulares distancias, nos parece n los más cercanos mayores que los que están más alejados (según ha s ido mostrado en la óptica); así, en arcos iguales de una órb ita (a l ser visto a una distanc ia diferente) aparecerán movim ientos desiguales e n tie mpos iguales. Por esta causa ante todo, j uzgo necesario que con todo cuidado señalemos cuál sea e l comportamiento de la Tierra con respecto a l ciclo, para que mientras q ueremos es tudiar lo más a lto, no ignoremos lo que nos es m ás próx imo, y por e l mismo error atri bu yamos a los c uerpos celestes lo que es propio de la Tierra.
Copyrightcd maleria
28
A HOMBROS DE GIGANTES
5. ACERCA DE SI EL MOVIMIENTO DE LA TIERR A ES CIRCULAR Y DE SU POSICIÓN Ya se ha demos1rado que 1ambién la Tierra tiene forma de g lobo. Pienso que se debe ver si el mov im iento es consecuencia de su forma y qué posició n ocupa en el universo: sin estos datos no es posible hallar una razón fija de los movi micmos aparentes en el cielo. Aunque entre los autores, una mayoría conviene en q ue la Tierra descansa en med io del n1l1ndo, de 1na11crn que juzga11 esto co1110 i11opinab lc )' hasta ridículo pensar Jo contrario: si n cn1bnrgo. si lo considcrar11os con más atención. esta cucstiór1 aparecerá no )'U sólo como no resuelta, sino tam bién como nada desprec iable. Pues todo cambio segú n lapo· sición que aparece, o es por el movimiento de lo mirado, o del que mira, o evidentemente por un cambio dispar de uno y o tro. Pues no se percibe movim iento entre mov im ientos iguales entre sí. me refiero a entre lo visto y el que ve. Y es desde la Tierra. a partir de don· de se contemp la aquel cic lo celeste y se representa a nuestra visión. En consecuencia, si se le atribuye t•lgú111no\•imicnlo a ltt 1"icrra. el 1nis1110 t1pc1rcccrá igl1al c11 el un iverso qt1c Je es exterior. pero co1110 si pa.samn ¡Jor c11ci111n c11 sc11t ido 01>ucsto. tttl es en 1>ri 111cr lt1go1r ltt rcvo luci611 di<.tri<.t. J>ucs este 111ovi11·1icnto Jlarccc arrastr
Copyrightcd maleria
29
NICOLÁS COPÉRNICO
del c ic lo, y que por esta ca usa es inmóvil, de modo que al moverse el uni verso el centro pennancce sin movimiento, y lo que está próx imo a l centro se mueve muy lentamente.
6. DE LA INMENSIDAD DEL CIELO CON RESPECTO A LA MAGNITUD DE LA TIERRA El hecho de q ue esta 1an gran masa de la Tierra no sea com parable con la magni tud del c ielo puede emenderse por lo sigu ieme: porque los círcu los limilanles (pues así se 1raducen los ópCt 01rrat de los griegos) corran en dos roda la esfera de l cielo, esio no podría suceder si la magni1ud de la Tierra compamda con e l c ielo, o su d islancia desde el centro del mundo, fuera muy imponame. Pu es el círcu lo que corra la esfera en dos pasa por e l cenlro de la esfera y es el máximo de los circunscribibles . Así pues, el horizon 1e sea el cfrcu lo ABCD, y sea E la Tierra, donde eslá nues1ro puma ele vista y e l centro del horizome, desde el cual se separan las (estre llas] visibles de las no visibles. Por med io ele una diop1ra o de un horoscopio o un corobaie, colocado e n E, se ve el princip io de Cáncer nacieme en e l punto C, y e n e l mis mo morn emo aparece e l principio de Capricorn io po nien1e en e l punlo A. En consecuenc ia, estando AEC en línea recta según la cliop1ra, cons1a que es un diáme1 ro de la eclíp1ica, porque los seis signos [del zod íaco] visibles de limirnn un se micírculo, y e l cemro E es e l mis mo que el del horizonte. Pero 1cnninada f. la revolución, cuando e l principio de Capricornio surja e n B, entonces se f. verá tamb ién el ocaso , de Cáncer en D y la línea BED será recta y un diámetro de l mismo círcu lo: y es patente que su centro está e n la sección comú n. En consecuencia, e l círculo del horizonte cortará siempre a en dos a Ja eclíptica, que es el círculo m áximo de la esfera. Y como en Ja esfera, si un círcu lo cona por la m itad a a lguno de los círculos máximos, también e l que cona es máximo . Por tanto, uno de los círcu los máximo es el horizonte, y su centro. según parece, es el m ismo que el de la eclíp1ica, siendo, sin embargo, necesario que sea distinta In línea que parte de la superficie de la Tierr.:i, y la que parre del cemro. Pero u c"usa de la inmensidad con respecto a la 1ierr.:i se asemejan a par.tlelas, que parecen como una sola línea por la excesiva distancia del límite Jinnl. cuando el espacio mutuo que comprenden en relación con s u lo ngitud res ul la de es1e modo incomparable pura la percepción. como se demuestm en óptica. Por este argum cn10 aparece suficientemente claro que e l ciclo es inme nso en com paración co n la Tierra y que ofrece un uspc.c to de infinita magnitud. pero ame iodo.
Copyrighlcd maleria
30
A HOMBROS DE GIGANTES
para la estimación de los sen tidos. En magnitud, la Tierra es con respecto a l cielo como un punto con respecto a l cuerpo y como lo finito con respecto a lo infi nito. Y no parece haberse dc1nostrado otra e.osa; pt1c.s de ¡1hí no se sigue que la T ierra deba csttlr quictt1 en el medio del mundo. Y aú n nos iramos más de que tan vasto mundo de la vuelta
en un espac io de XXllll horas. m{ts que una mínima parle de éste que es la Tierra. Pues los que dicen que el centro es inmóvil y también que las cosas próximas al centro se mueven menos. esto no prueba que la Tierra esté quieta en medio del mundo. y no es diferente que si d ijeras que e l cielo g ira . pero los polos est{tn fijos, y que las cosas próximas a los polos se mucvcn muy poco. De t:sle 1nodo se manifit:sla que Cy· nosura [la es trella po lar) se mucvc con mucha mayor lentitud que Aqui la o Canícula. porquc describe un círculo nwnor por la proxim idad del polo. Co mo todas ellas forman pt.1rte de u11\l 1nis111a csfcr.:t. CU)'tl lll0\1 ilidad . dcsa¡>~1rccic11do j \111lo ''su cje. 110 ad111 ilc un 1110\1i1nic11to igua l e111rc sí de tO(l¡ls su s pé11'1cs: sin c111bargo. la rt:.\10 Jució11 totc'1l las con-
duce en una igualdad de tiempo, pero no en una igualdad de espac io . En esta razón se apoya el argu mento según el cual la Tierra constituye una parle de la esfera celeste, de la mis ma espec ie y del mismo mov imiento. de modo que por estar próxima a l centro se mueve poco. Luego, ella misma se moverá, en cuanto cuerpo ex is· lente, no e n cuan to centro, en e l m ismo tiempo con respecto a arcos semejantes del círcu lo celeste, aunque menores. Que esto es falso, es más c laro que la luz: pues e ntonces sería necesario q ue el mediodía perma neciera siempre en un lugar, y en o tro siempre fuera medianoche, y no se podrían producir ni los orlos ni los ocasos cotidianos, siendo uno e inseparable el movimiento del todo y de la parle. Pe ro la relación entre aquellas cosas que están sepa111das por una diferencia sus tancial es e nte ramente diversa: las que se mueven en una órbita más pequeña a vanzan más deprisa que las que recorren un círculo mai•or. Así, el astro Sawrno, e l mayor de los errantes, completa su g iro en e l año treinta, y la Luna, q ue sin duda es e l más próximo a la Ticrr~1. recorre st1 circuito c11un111cs~
y In 111is111:1 T ierra, li11nl111c11tc, parcccr.'i co111·
plcrnr su circuito e n el espacio de tiempo de un día )' una noche. Por consiguiente resurge la duda sobre la revolución d iaria. E incluso su posició n se cuestiona como menos segura por lo anterionnen1e d icho. Pues dicha demostración no aporta ninguna otra cosa que la inmensa magnitud del ciclo con respecto a la Tierra. Y no consrn en manera alguna hasta dónde se extiende esta inmensidad. Igual que, en el extremo opuesto, en los corpúsculos mínimos e indivisibles, que llaman átomos. aunque no son sensibles, duplicados o tomados mú lliplemente no componen de inmediato un cuerpo visible , pero pueden multiplicarse hasta mi pumo que sean suficientes para aparecer con una magnitud aparente; así ocu rre también con respecto a la posición .de la Tierra, au n no estando en el centro del mundo, sin embargo, su distancia [al centro] es incomparable sobre todo en relación con la esfera de las e stre llas fijas.
7. POR QUÉ LOS ANTIGUOS PENSARON QUE LA TIERRA ESTABA INMÓVIL EN tvlEDIO DEL MUNDO COMO SI FUERA SU CENTRO Los filósofos amiguos, con a lgunas otras razones, intentaron demostrar en esta cuestión que la Tierra estaba en el medio del mundo. Así, a legan como causa m~s poderosa la de
Copyrighlcd maleria
NICOLÁS COPÉRNICO
31
la gravedad y la ligereza . Pues la T ierra es el elemento más pesado y todas las cosas pesadas son conducidas hacia ella, y tienden hacia su auténtico pu n10 medio. En efecto, siendo l<-1 T icrn1 esférica, hncia ella son ttrrastradas las cos¡1s 1ntís grr1vcs por su proJ)ia naturalczt1. for111a11do ángulos rectos con s11supcrfic.ic. y si no f11cran retenidas en cli cl1a SUJJcrficic. cé1crít1n hacia su centro: p11cslo c1uc u11a línctt rccléi, que c<.1c pcrpc11dicult1r tt 1111~1 SUJJcrficic pla11a. ta11gcntc a 1;:1 csfcr¡t, J lasa por el centro. Pero parece scg11 irsc que las cosas son conducidas al punto medio para quedar inmóvi les en el centro. En consec11l.!11ci;:1, tanto 111ás clcsc¡1ns¡111i loda la Ticrrr1 c11 el cc11tro. y c ll~1. que rcc.ibc en sí todo lo que cae, perman<Jccrá inmóvil por su peso. Oc igual r11odo. t~unbié11 se i11tcntt11>robarlo c11 razón del 1tlovi11) ic 1110 )' de su ne:ttt1rct· leza. D ice A ristóteles q ue el movimiento de un c uerpo simple i:s simple. Pero hay un mo v imiento simple meto y otro circular ; de los rectos hay uno hacia arriba y o tro hacia abajo. Por lo que iodo movimicnto simple o se dirige hacia el centro. que es hacia abajo. o parte del ccntro, que cs hacia arriba. o alrcdcdor del centro. qut! es el circular. De este modo, conviene que las tierras y las aguas, consideradas elementos más pesados, sean arrastradas hacia dentro, esto es, que se d irijan al centro, pero los aires y los fuegos, que se destacan por su ligcre1..a, han de moverse desde el centro hacia arriba. Parece conveniente conceder un movim iento rectilíneo a estos cuatro elementos, y en cambio a los cuerpos celestes el que se muevan en una órbita alrededor del centro. Esto d ice Aristóteles. Consecuentemente, dice Pto lomeo de A lejandría, si la Tierra d iese vueltas, al menos una revolución diaria, tendría que suceder lo opueslo a lo an1es señalado. Pues su m o vim iento tendría que ser muy violen10 y su rapidez insuperable, ya que en XX!lll horas recorrería iodo el ámbito de la Tierra . Pero este mov im iento ven igi noso lan;i,aría de repente todas las cosas y parecerían incapaces de uni rse, y más bien se dispersaría lo un ido, a no ser que algum1 fuerza de coherenc ia las mantuviera en su unidad. Y ya hace tiempo, dijo, la Tierra dispersada se habría elevado al mismo cielo ( lo que es tota lmen te ridículo),)' con m ayor mot i vo, los seres animados y todas las demás cosas suellas en manera alguna permanecerían estables. Pero tampoco las cosas que caen se dirigirían en línea recta al lugar destinado par:i ellas, ni en la perpendicular, desplazada entre tanto (la posición) por tama rapidez. Y también veríamos que las nubes y cualquier otra cosa pendiente en el aire siempre er:in arr:istr:idas hacia el ocaso (occidem e].
8. SOLUCIÓN DE DICHAS RAZONES Y SU INSUFICIENCIA Por estas y semejantes r:izo nes dicen que la T ierr:i está inmóvi l en el medio del mundo )' que no hay duda sobre ello. Pero si alguien opi nara que la Tierra da vueltas, diría que tal movimiento es nmu r:il y no v iolento. Y lo que acontece de acuerdo con la naturaleza produce resu l tados opuestos a lo que acontece de acuerdo con la vio lenc ia. Pues es necesario que se destruyan aquellas cosas sobre las que actúa la fuerza y el ímpetu, y que no puedan subsistir mucho tiempo. Pero lo que surge de la natur:ile1.a se mantiene corrcct~ln1c11tc )' se co11scr\1a c11 Slt co111posició11 óptintn. Luego. c11 \(3110 tc111c J>tolo111co que la Tierra y todo lo terrestre se disperse a causa de una revolución realizada por la eficacia de la naturaleza, que está bien lejos de la del arte o de lo que puede conseguir-
se
111cdia11tc
el i11gc11io
hu111a110 .
Pero ¿por qué no sospecha eso m ismo, con mayor razó n del mu ndo, cuyo m ovim iento debe ser tanto más veloz cuanto es m ayor el ciclo que la Tierra'/ ¿O se ha
Copyrightcd maleria
32
A HOMBROS DE GIGANTES
hecho el c ie lo tan inmenso, porque un movimiento de inefable veheme ncia lo a leja del centro, y de no ser así caería si estuviera quieto? Con seguridad, si este razonamiento 1uvic.r(1 razón de ser, ltl magnit11d del ciclo 1a1l'lbién se di rigirítt h;:tcia lo i11fi 11ito. P11cs 11n 1no\1 i1nic.n to c11,1nto m6s es llc\'ttdo J1,1ci<.1 lo alto por su í111pctu 1 tanto más veloz será a causa de ltt sic1n1)rc crccic11tc circ1111fcrc11cia. que ncccs;1ria11·1cntc ha de recorrer c11 el
espacio de XXlfll horas: y a la vez. a l crecer e l movi miento. crece la inmensidad del ciclo. Así la vclocidnd har
luto nada, y no existe nada por donde pueda extenderse el c iclo. Entonces es realmente :1dmirab le. si a lgo puede ser contenido po r nada. Pero si el c iclo fuera infinito y s61o ft1era finito en Sll co11c;.t\1 idc:uJ i 111erior, <1uizá con 111ás ft1crza se cor1fir111t1r,l c1uc ftrer;:l del cielo 110 hay nc.1da . pueslo que cualq11 icr cosil cslarÍ
ocupara. pero el cielo mismo penn anecería inmóvil. Pues e l a rgumento m;\s fuerte para imemar demostrar que e l mundo es finito es el movim ie nto. Pe ro dejemos a la discusió n de los fi siólogos [fi lósofos de la naturaleza] si el m undo es finito o infi nito, teniendo nosotro s como seguro esto, que la Tierra está limitada por sus po los y terminada por una superficie esférica. Luego, por qué dudamos a ún en concederle u na movi 1iclad por na tu raleza congruente con s u forma, en vez de deslizarse todo el mundo , c uyos lím ites se ignoran y no se pueden conocer, y no confesamos sobre la re voluc ió n diaria q ue es a parienc ia en e l c ielo y verdad e n la Tie rr'J, y que estas cosas son como lo que d ijem el Eneas de Virgilio, c uando a firma: «Salimos de l pue rto y las tie rras y las ciudades re troceden». Puesto que al flotar una nave sobre la tra nqu ilidad de las aguas, todo lo que está fuera de e llos es considerado por los navegantes mo viéndose, de acuerdo con la image n de su mo vim iento, y :11 mismo tiempo juzgan que están q uietos, con rodo lo que está con e llos. Así, en lo concerniente a l movim iento de la Tierra. puede estimarse que todo el mundo da vuelias. Po r consigui ente, ¿qué pod ríamos decir de las nubes y de todas las demás cosas que flotan en el aire, bajan, se detienen, o suben de nuevo a las alturas, si no es q ue la Tierra. con e l elemento acuoso unido a ella, se mueve ele esrn forma, y también que una parre no pequeña de a ire y todo lo que tiene del mismo modo relación con la Tierra, sea porque el aire próx imo a la Tierra, mezclado con materia acuosa o térrea, sigue la m isma naturale1.a que la Tierra, o sea porque e l movimiento del a ire e s adquirido, que participa en la perpetua revo lución y sin resis tencia a causa de la contigü idad de la Tierra? Por e l comrario, con u11a nd111iraci611 igual, dicen que In rcgi6 11superior del aire sigue el 1110\1 i111ie11to ce leste, lo
que revelan aquellas estrellas repentinas, me refiero a los cometas, también llamadas pogonías [barbadas] por los griegos, para c uya generación designan tal lugar; las cuales ta mbién, como los otros astros, nacen y se ponen. Nosotros podemos decir que, por su gran distancia desde la Tierra, esa parte de l aire est(l privada de aque l movimiento te rrestre. Por eso aparecer:\ tranquilo e l aire que es tá próximo a la Tierra, y también Jo que está suspendido en é l, a no ser que , como puede suceder, sean agitados por el viento o cualquier otro ímpetu. ¿ Pues es el viento en el a ire otra cosa distinta qu e las o las en el mar? Pero tene mos que confesar que e l 1novim iento de lo que cae y de lo que se e leva es doble, en comparación con e l del mu ndo, y compuesto de un movimiento recto y uno circular. Y en cuanto a las cosas que caen por su prop io peso, siendo sobre todo de tierra, no es dudoso que las partes conserven la misma naturaleza que el todo. Y no se p re-
Copyrightcd maleria
NICOLÁS COPÉRNICO
33
sen la ninguna otra razón en las que por una fuerza ígnea son lanzadas hacia las alturas. Pues la mbién este fuego terrestre se al ime nta sobre todo de una materia 1érrea, y definen la llama no ele o tra manera que como humo ardiente. Pues es propicclacl del fuego extenderse tl lodo lo que i11vttdc: y esto Jo hace co11 t;.1nta f11crz.a qt1c con 11 i11gú 11 proccdi· 111icnto. 11i co11 11i11gu11a 1nác¡uin(t puede itnpcdirsc q trc. rotn l;.1 cárc.cl. co1•11>lctc s11 ob111.
También el movim icnlo se extiende desde e l centro hasta la circunferenc ia. Oc ahí que. si alg11na de l:;ts pt1rtcs terrestres se c11ccndicra. sería llc\'ada del centro a lo alto. En consecuenc ia. lo que dicen de qu<: un movim ien to simple es propio de un cucqJo simple. s<: v<:riftca en primer lugar del circu lar. si el cuerpo sim ple permanece en s u lugor 11c:11u1c:-tl y c11 su propia uniclt-td. E11 cs;.t posició11el1110 ,'illl ic11to no es o tro c1uc el circ11· lar, que permanec<: tota lmentc en sí. semej ante a lo que está en reposo. S in embargo , el mo vimiento rectilíneo sobreviene a aquella s cosas qu<: so n desplazadas de s u lugar natuml. o que so n empuj adas o que de algún modo están fuera de él. Y moda repugna tanto a la ordenación y forma de todo el mundo cuanto que algo. c sté fuera de su si tio. Luego el mo vim iento recto no sucede si no a aquellas cosas que 110 se mantienen co rrectame111e y no so n perfectas confo nne a la naturaleza, cua ndo se separan de su todo y a bandona n su un idad . Sobre todo las que se agitan arriba y abajo , y no tienen , excepto el circu lar, n ingún movi miento simple. un ifo rme y regular, pues no pueden estar en equil ibrio a causa de su ligereza o por el impulso de su peso. Y todo lo que cae, te niendo al principio un movim iento len to, aumenta su veloc idad a l caer. Por el con trario, vemos que este fuego terreno (y no vemos ningú n otro) impulsado hacia lo alto , inmediatamente languidece, reconociendo como causa la de la violencia de la materia terrestre. El ci rc ular siempre g ira regu larmente, pues tiene una causa constante, sin embargo aqué l [el rec1ilíneo ] deja de acele rarse; porque al conseguir su lugar dejan de ser pesados o ligeros y cesa aquel mo vim iento. Siendo, pues, e l movimiento circular e l del todo, en cambio e l rec1 ilíneo el de las panes, podemos compamr el movhniento circular con el rectilíneo, como un ser vivo co n uno enfermo . Y el hecho de que Aristóteles d ivida el mo vim iento s imp le en tres c lases: el q ue parte del centro, e l que se dirige al cen tro y el que gira al rededor del centro, se juzgará co1110 urt único acto de razorta111icnto, del 1n is1110 ntodo <111c distingu i111os
Ja linea, e l punto y Ja superficie, aunque no pueden su bsistir el uno sin el otro , o sin el cuerpo. J\ esto se ailade ta mbién que Ja condición de inmovilidad se considera más noble y d ivina que la ele mutació n o inestabi lidad, que convienen por ello más a Ja Tierra que al mundo. Añado también que parecería bastante absurdo adjudicar un movimiento a l co ntinente o Jocaliza111e y no más bien a l conten ido o localizado, que es Ja Tierra. Finalmen1e, siendo manifiesto que las estre llas errantes se aproximan o se a lejan de Ja Tierra, ento nces será el movimiento de un solo cuerpo que se desarro lla alrededor del punto medio (ellos q uieren que sea el centro de la Tierra), desde el punto medio y mmbién hacia e l m ismo. En consecue ncia, conviene que el movimiento, que se realiza alrededor del punto medio, sea to mado como e l más general y suticiente, de modo que el movimiento de cada uno se apoye sobre su propio centro. A partir de todas estas cosas adviertes que es más probable la movilidad de la Tierra que la quietud, sobre todo con respecto a la revolución diaria, mucho más propia de la Tierra. Y pienso que esto es s uficiente para la primera parte de la cuestión.
Copyrightcd maleria
34
A HOMBROS DE GIGANTES
9. SI PUEDEN ATRIBUIRSE A LA TIERRA VAR IOS MOV!fvl!ENTOS Y ACERCA DEL CENTRO DEL MUNDO En consecuenc in, como nada imp ide la mov ilidad de la Tierrn . pienso que :1hora hay ((Ue ver si le convie11en \1arios 111ovi11·l ien1os. de rl1odo que pueda consiclerarse uno de
los asi ros errantes. Pues que no es e l cen1ro de 1odas las revo luc iones lo ma nifiestan el :1¡>0.1rer1le 1llOvi 111ien10 irregul;1r de las err'-i11 1es
y sus dist:lncias \"<:l riab les a
la T ierra,
que no pueden en1enderse median1e un c írculo ho mocéntrico sobre la Tierr
or la d ivina provi· denc ia del hacedor del universo, para con ferirles la unidad e integridad, juntándose en forma de g lobo. Este modo de ser es también mri buible a l So l, la Luna y las de más fulgurantes entre las errantes, para que, por s u eficacia, permanezcan en la redondez con Ja que se presenta11, las cuales, si11 e111bargo. realiza11 sus circuitos de mucl1os 1nodos
diferentes. En consecuencia, si la Tierra realiza o tros movim ientos, por ejemplo alrededor del centro, será necesario que éstos sean semejantes a los que aparecen exteriormente en muchos (astros) , entre ellos encontramos e l circu ito anual. Puesto que si se cambiara (el movi miemo) de solar en terrestre, concedida la inmovilidad del So l, Jos ortos y los ocasos de los sig nos y de las estrellas fijas, por los cuales se convie rten e n estrellas ma· 11uinas y \'espertinas, aparecerían del mismo modo, y también las dete nciones, Jos retrocesos y avances de las errantes, no parecería como propio de ellas, sino como un movimiento de la Tierra, que cambian e n virtud de sus apariencias. Finalmente, se pensará que el Sol ocupa el centro del mundo . Todo esto nos Jo e nseña la razón del o rden, según Ja cual se suceden unas cosas a otras. y Ja armonía de todo e l mundo, si, como dicen. co n los dos ojos contemplamos esia cuest ión.
10. SOBRE EL ORDEN DE LAS ÓRBITAS CELESTES Observo que nadie duda que e l c ielo d e las estrellas fijas es lo más a lto de todo Jo visi· ble. Pero vemos que los an1 iguos filósofos querían t0mar el o rden de las estrellas errantes segün la magnitud de sus revoluciones. aceptando como razón el que, a igual velocid:id de los móvi les, est'1n más lejos los que parecen 1110\•erse más despacio, segün se demuestra e n la Óptica de Euclides. Por ello piensan que la Luna da la vuell:l en un espacio brevísimo de tiempo, puesto qu e se mueve próxima a la Tierra en un círcu lo muy pequeño. En cambio, consideran a Saturno el más alto, porque recorre el circuito m:'.is grtmdc en el tiempo mayor. Por debajo de é l esl::í Júpiter, después de éste, lvlane. Sobre Venus y Mercurio se encuentran varias opiniones, porque no se alejan del Sol de la mis· ma manera q ue los otros. ' Po r ello , unos los colocan por encima de.J So l. como Time-0 1. La 111áxi1na clong:ición angular entre Venus y el Sol es aproxintada1ncntc 45 grados; la de ~·lcrcurio, aprox imadamente 24 grados: micnlr:1s que Saturno. Jlipilcr y Ylartc tienen todo el dorninio posible de clon· g::tcioncs angulares. es decir. hasta J80 gro.dos.
Copyrightcd maleria
35
NICOLÁS COPÉRNICO
el de Platón, otros por debajo de él. como Pto lomeo y gran parte de los más modernos. Alpetragius coloca a Venus superior al Sol y a J\1ercurio inferior. En consccucncitt, los qt1c siguen a Plaló11, considc.f'-lll qttc- todtts las cslrcllas. cucr· pos oscuros por o tra parte. brillan con la luz recibida del Sol: si estuviesen por debajo del Sol. por la poca distancia desde éste. serían vistos faltándoles la mitad o parte de su redondez. Pues la luz rec ib ida la reenvían hacia arriba. esto cs. hacia el Sol. tal como \'Cltl os en la Lu11a 11t1C\"íl o mcngt1a111c. Ta1nb ié11 dicen qt1c ;_1 veces el Sol es intcrcc1>1a· do por el paso de ellos y le falta la luz a tenor de su nmg nitud: corno esto no sucede nunca. piensan que de ni ngú n modo están por debajo del Sol. 1 Por el contrario. quienes colocan por debajo del So l a Venus y Mercurio rei\'i ndican como mz6 n la ampl itud de espacio qm: aprecian entre el So l y la L una. Pues cnco11traron qt1c
la dis1a11cia 111áx i111t1 de 1;:1 Tícrr.:•
sexto unidades, siendo una unidad la distancia desde el centro de [el radio) la Tierra, tal medida está contcnidn dieciocho veces en el intervalo mínimo del Sol [y la Tierra]. que son l .160 unidades, y entre el mismo y la Lu na 1.096. Y pam que no permanezca vacía tan gran extensión, a partir de los intervalos entre los ápsides, por med io de los cua les se calcu la el espesor de aquellos orbes,' encuen tran que estos números [distancias! son completados, de tal manem que al ápside más alto de la Lu na sucede el más bajo de Mercurio, a cuyo punto más alto sigue la pró xima Venus, la que desde su ápside más elevado casi toca al ínfimo del Sol. Y en efecto , entre los ápsides de l\1ercurio calculan unas cientosetenta y siete y media de las unidades antedichas, y el restante espac io se llena con el i ntervalo de Venus' de aproximadamente 910 un idades. Por tanto, no reconocen que en estas estrellas haya una cierta o pacidad sim ilar a la de la Luna, sino que brillan co n luz propia o impregnados todos sus cuerpos por el So l y por ello no ponen impedimento al Sol, lo cual en la rea lid
0r la rai 6n del <.li~í n1c tro tlcl e1Jiciclo al dián1ctro de l:t esftr:l o, en ti diagrama :l.djunro, por la distancia cnt.re el 1nás inlerno y el n1ás cxtcrflo de los trc..'i cfrc.ulos concéntricos. 3. La sucesión de Jos círculos orbitales segun sus perigeos y a1>0,scos pt.1ede ser re· prcscnl::1da en el diagm111a siguiente. c1uc h{t sido dibujado a csci.lln.
0
Copyrightcd maleria
36
A HOMBROS DE GIGANTES
había visto algo negruzco, cuando o bservó la conju nc ió n del Sol y M ercurio que había calculado. Y por ello opinan que estas dos estrellas se mueven por debaj o del círculo
solar. Pero Clitln poco fin11c y cierto es e-s ic razontt111 icnto se 1nanificsla en que siendo la distt1nci(t hnsta el 1>crigco lunar. scgú11 Ptolornco ele 38 11nidt.1dcs. ele l;.1s q11c tina u11idlld es del centro de la T ierra a su superficie [el mdio]. pero según una estimación m:ís verílZ son 111ás de 49 (c-0 1110 se 111ostrt1rii 111ás tarde), si11 c111bnrgo sabc1nos que c11 10:111 gran cspt1cio 110 h¡ty co111c11ida ninguna otra cosa nltd<11n::ls q11c t.tirc y. si se q11icrc. incl11so lo que llaman elemento ígneo. Además. el d iámetro del círculo [del epic ic lo] de Venus. por el que se sepam [digres ión angular] del Sol XLV gmdos más o menos a cada l11do. debe ser seis veces mayor que la d istancia desde el centro de la Tierra al ápside inferior de .:1quél. co1110 se dcr11ostrará en s11 lt1gar.' ¿Qué dir(J11. 1)ucs. C(UC l1cty co111c11 ido c11 un csi)~1cio tar1 grJndc co1110 )Jara que con1c11ga la Tit:rrJ. e l ~iire. el éler. l¡t Lt11'la y Nlc rcur io? Y. además. ¿qué albergaría aquel ingente epiciclo de Venus. si g irase alrededor de la T ierra inmóvil? También se manifiesta poco convincente aquella argumentac ió n de Ptolomeo, segú n la c ual debería ocupar el Sol una posic ión media entre los p lane tas que se separan [elongación angular] en todos los sentidos y los que no se separan.2 puesto que la Luna al separarse ella misma en todos los sentidos, muestra su falsedad. Pero ¿qué causa alegarán los que ponen bajo el Sol a Venus y después a M ercurio, o los separan en otro o rden, puesto que no realizan circuitos separados y diferentes del Sol como las demás estrellas errantes, a no ser que la relació n entre velocidad y lent illld no falsee el orden? En consecuenc ia, sen1 necesario o q ue la Tierra no sea el centro, al que se reli ere el orden de los astros y de los orbes, o no habrá, ni aparecerá, una razón segu 111de orden,
por la que la posición superio r es debida más a Saturno que a Júpiter o a cualquier otro. Po r ello c reo que no debe despreciarse en absoluto lo que opi nó Martianus Capella, que escri bió una enc ic lo ped ia, y algu nos o tros latinos. Pues pensaron que Venus y Nlercurio giran alrededor del Sol, que está en el centro, y juzgan que por esta causa no se apartan de él m:\s de lo que les permite In convexidad de sus o rbes: por lo que no ro dean a Ja ·ricrra. co1110 los dc111ás , si110 que sus :1psidcs girn11 en otros scnlidos. Pues, ¿qué orra cosa quieren decir sino que el centro ele aquellos orbes est:\ alrededor del Sol? A sí, la órbita de Nlercu rio conviene que esté encerrada dentro de la órbita de Venus, que es mayor en m:\s del doble, y tendrá por esa misma amp li tud un lugar suti cicnre para ella.' l. Segó:n llcolo1ne<>, la razón del radio del epicic Jo de \ 'enus al J';.lclio
3 a 4. o aproximadi:uncntc 43 1/11 a 60. Co1no en el perigeo el epiciclo se resta de Ja distancia inedia. o radio del cír<.'t1lo excéntrico. y en el apogeo se Sl1m:1:a I~• <-lis1;¡nci:1mc
roxin1ttd:i1ncn1e de 36 a 1, ya que J:11n:ignitud :ipare1ue Yflrí:t in,·crs.a111cntc a Ju ruzón del cuudrudo ele la disLrinc:ia. ])ero no $C obscrvn 1.al aumcnt<..1 en la n1agnitud tlcl pl:ine· 1a. Es1a oposición entre una apariencia y las t'Onsecuencia.s de una hipótesis hecha para salvar otra :iparic-nc.ia aún cslá pres.ente en el propio esqucnla de Copérnico. 2. Ptolon1eo hace que los éénlrOS de los epiciclos de \ 1enus y tic Mercurio vi:1jen
alrededor de In licrr.i longitudin:ilmentc con el mismo ritn10 que-el Sol medio. )' de tal 1n:•ner.1((UCés1c se h::1lle sie1npre sobre la rcCla l)ue se ex1ie11dc llCs
Copyrightcd maleria
37
NICOLÁS COPÉRNICO
Si alguien, aprovechando esto como ocasión, relacionara tam bién Saturno, Júpi ter y Marte con aquel mismo cen tro, entendiendo su magnitud tan grande que puede conte-
ner lo que en ellos hay y rodear a la Tierra. no se equivocará. Esto lo demuestra la rclac ió11 cxistc11tc c11 la tabJ,1 de sus nlo\•imicntos. 1 Pt1cs co 11s tt1 que cs1án sic1l'lprc Jll(ÍS cerca de la Tierra alrededor de s u salida vespert ina. esto cs. cuando e stán en oposición al Sol. media ndo Ja Tierm entre ellos y el So l; en cambio. están más lejos de Ja Tierra e n l. Considérese el caso de ~1artc. Scgtín P1olon1co. In razón de su e1>iciclo a su excéntrica es 39 1/~ a 60. o :iproximad:imcnlc 2 n 3. ~1 nrtc licnc 37 ciclos de anomalía,<> movimiento sobre el epiciclo, y 42 ciclos de longitutl. o 1UQ\•i1nicn10 del icic::lt) sol'>1'c la c:
zón del n10\1imiento del Sol al de los planetas es de 2 a l. Copél'nico sugiere aquí que si el centro del nloVi· n1 iento del planeta est:1 situado alrec.le
ngase que el planeta en el pcl'igco de su epiciclo se ve al co1uic.nzo de 1\cu~l'io, c.n o¡JOsicití n al Sol. A continuación, supóngase que el Sol se despla1.a 240 gr;ldos hacia el este, hasta el co1nienzo de Aries; )' SU· ¡>6ngtL'ie que
HIPÓTESIS PTOLEMAICA
HIPÓTESIS SEMICOPERNICANA
.
·...
:Q".
.•
. ~~
\.1 __ -r·~ :,_··--"i' o· •, :.
..
... ·... '
\
Movimiento del Sol • 2AO" Movimiento dtt &o excéntrico = 120º Movimiento del epiciclo • 120"
..,,_..
-·••
1 ••
•
~·.
·-:.
.
·--
Movimienlo del
Sol • 240,
Movimiento de Marte= 120º
Copyrighlcd maleria
38
A HOMBROS DE GIGANTES
el ocaso vespertino. cuando se ocultan cerca del Sol, mientt-as tenemos al Sol entre ellos y la Tierra. Lo que indica suficientemen te que su centro remite más al So l y alreclcdor del cual rcalltÁ'ln sus giros Vcnl1s y f\1crc t1rio. 1 Pero al sustentarse todos en un solo centro, es necesario que el espacio que queda entre el orbe convexo de Venus y el cóncavo de Marte, sea considerado también como un orbe o una esfera. homocéntriea con aquéllos. con respecto a las dos superficies. y que contenga a la Tierra, a su acontpañm1tc la Lu na, y todo lo que cst;'Í contenido baj o el globo lt111ar. De ningú11 n1odo J>odc111os sc1>•1rar de li.l Ticrr.:t a la Lu n~1. que está, fucr:.t de toda d iscusión, muy próxima a ella. sobre todo habiendo hallado en este espacio un lug;,1r nclccu ;,1do )' suficic11lc1nc111c c:-tlllpl io J>i1ra ella. í'or ello no 11os a\1crgiicnz;,1confcst1r que t:stc tocio c1uc e:1barca l;;:t Lu nc1, i11cluido el cc11tro de J;,1 Tierra, se l111sl<.-td•1 a tr:.tvés de
:1quella gr,1n órbita entre las otras estrellas errantes, en una rc"o lución anual alrededor del Sol, y alrededor del m ismo está él centro del mundo: por lo que pcnnanccicndo el Sol intnÓ\•il. cu:ilqu icr cosa que aparezca rt:lacio nada con el 111ovi111 ien10 del Sol puede veri ficarse aún mejor con la movilidad de la Tierra; pero la mag ni tud del mundo es tan grande que, aunque la d istancia de la Tierra al Sol tenga una dimensión bastante evi dente con respecto a cualquier otm órbita de las eslrellas errantes en razón de sus magnitudes, no aparece como perceplib le co n respeclo a la esfera de las estrellas fijas. Creo que esto es más fácil de conceder. que distraer la inteli gencia con aquélla casi infi nita 111ultitucl de órbitas, como están ob ligados a realizar, quienes detuv ieron a la Tie1r.i en el centro del m undo. M ás bien hay que segu ir la sagacidad de la naturaleza, que así co1110 ev itó al 111áximo que se produjera algo superfluo e inútil, del mismo modo adornó a veces una misma cosa con muchos efectos. Siendo todo esto muy difícil y casi inconcebible, y por su puesto cont ra la opinión de Ja 111,\yorí~t, sin e111bargo, (ti ''\~'nznr, con 1,1 ;:l)'ud¡, de dios, lo hétre1nos 111ás cl~1ro que el mismo Sol, sobre todo para los que no ignoran el arte de las matemálicas. Por lo que permm1ccicndo a salvo la primera razón (pues nadie alegará una mas convcn ieme que la de medir la magni tud de las ó rb itas por la canlidad de tíempo}, el o rden de las esferas se sigue de esta manera, empezando por la más alta. L a primera y más alta de todas es la esfera de las estrellas fijas, que se contiene a sí misma y a 1odas las cosas, y por ello es inmóv il: es, pues, el lugar de l universo. con respecto a la cual se relaciona el movi miento y la posic ió n de todos los demás astros. Pues, si algunos consideran que ella tamb ién se mueve de algún modo, nosotros atr ibu iremos [ese movimien10], aunque :i.~í lo parezca, a o tra causa. en la deducción del movimiemo terrestre. Sigue Saturno, el primero de los astros errantes, que completa su circuito en treinta años. Después ele éste Júpiter, que se mueve en una revo lución de doce años. Después Nl arte, que g ira en dos años. En este orden, la revo lución anual ocupa la cuarta posición, en dicha revolución dijimos que está contenida la Tierra jun1. Copérnic:o se pregunta p<.>r qué raión los planel:lS siempre se h:1llan en sus ~lpogeos en el 1no1ncnto de conjunción con el Sol. y en sus perigeos en el n1on1en10 de oposici6n, y:1 que de ucucrdo con el csquc111a ptolcn1:iic:o la d ConjuM:iÓfl, ~ición, según Ptolomeo
si1unción in,·ers.'1 también es posible - •al 00010 se 111uc-s:tra en el siguiente diagran13. l'cro si el Sol y no In Tie1Ta es el centro de los mo\•imicnlos del pl:Lncta. la ruzón es obvi:i.
Conjunción, ~ici-6n, según Copérnico
Copyrighlcd maleria
39
NICOLÁS COPÉRNICO
to con la órbita de la Luna como epiciclo. En quinto lugar está Venus, que vue lve al punto de partida en el noveno mes. Finalmente, el sexto lugar lo tiene Mercur io, que se 111t1C \ 'C
en un espac io de ochc11tc1 días.1
l. Para ver cón10 Col)l"rnico dedujo Ja duración de sus períodos de rc\'olución. considérense las sigt1ien· tes razones ptolemaicas p:tr:i Jos planetas inícriorcs:
ti.1crcurio
\'c nu.s
Cic/or ífe a11ornalílf 145 5
Ciclos de l1J11gi1utl 46+
A11t>s so/11res
8-
8-
46+
Resulta notnble que el ntimero de ciclos de longitud en un año sea igual al numero de ciclos solares. Adc1n:¡s , los dos planctus tienen una elongación angular limit;:1dn rcs1JiCcto al .Sol. Par.1cxplic:Lr cstns dos pccu l i ~1 rid:·1ctcs., Copérnico h :tté q ue l::i T ie rra se mucv:1 en 1:·1 c ircunlCrcncin
plane1a en ran1os años se convienen en el nún1ero de veces que el planeta avanza a Ja Tierra. a medid::i que an1l>os giran alrededor del Sol. Es decir. en tantos años solares el planeta habrá viajado alrededor del Sol un ntímero de veces que es igual ~1 1~1 sum ~' de sus cicl<>s de :1nomalía )' de sus ciclos de longitud. Así. por ejem· plo. Venus viaja alrededor del Sol aproximad..i.n1ente 13 veces en S años solares: por lo tanto. su período de re,·otución es o.pro:
no 1ncnsc rc
atio circumcu1Tens»). é l lector puede intuir de los siguientes diagra1nas lu equipolencia. con rcspcelo a las apal'icncias. de las explic-.acioncs ptolemaic;, y copernieana del mo\'imiento
ro:
upongn1nos \ 'enus e n conjunción con el Sol )' en e.J perigeo des.u epiciclo. Supong;.1n1os ;.1 conti· nu.ación que el Sol se desplaza J80 Grados haci:i el este hasta el medio de Tauro. y nnálogamenle el centro del epiciclo; duranle este n1isnu) in1crv:1lo. el pl:1nct:1se dc:q>laZ.1.r:'i 112'/~ gr:1dos h:1ci:1 el este sobre s u icicl<>)' ap;ireccrá aproximadamente en medio de 1\ries. es decir. unos 30 gr.ados al oeste del Sol. Pero. seg11n la hipótesis
érnico. colociuen1os el Sol en el cen1ro de los círculos Ol'bilales
erigeo cnlre Ja licn·:1 y e l Sol. de l:ll m~ac r.t que Venus y el Sol up.itrcccrÍ3n en medio de Escorpión. micnlra.s Venus se mueve 292 1/ z gratlos hacia el es1e. c n1011ces e l Sol aparccer.í en el cen1ro de Tauro. y el 111 isn10 planeta en n1cdio de Aric.s. es decir, a unos 30 grados al oeste del Sol. Pero vol \'ilmOS a los tres planetas superiQ1·es: Cicl ol' de a11(Jlt1(1/ia
Cil'lo:i· ele lo11gi1111/
A 1ios s0/(1reJ'
~1m-te
37
42 +
79-
J1ípi1er Saturno
65
6-
71 -
57
2+
59 -
Aquí. resulta notable que scgtin Ja hi1>átcsis ptolemaica la suma de las revoluciones del circulo cxcc!ntri· coy dt lns rc\'Olucioncs cu la anon1alía es ig1Lal al n1í1ncro ót.: ciclos solares~ y 1::11nbién que lus conjunciones con el Sc>l licnc lugar en el apc>gcQ del planeta, y l:1s (>poSici(>ncs en su pcrigc<.> . Pe ro según Coi>érnico. los ciclos 1>tolcn1aicos -.te nnon1alía rrescn1arán ahora el n1í111ero -.le veces que la lien-a ha avanzado al planeta. y el período de revolución en longin1d quedará solo. As í. por ejen1plo. San1rno tendrá dos revoluciones en longitud en 59 aiios, o una 1'c \·o lución alrededor
lane· ta estar:\ gi1.1ndo direcl:lmenle sobre su círculo excéntrico en lugar de ~irar sobre su epiciclo ptolemaico,)' la 1icrra estará girando ahora en un círculo interior que lienc 1:1111is1nn 1nngni1ud rcla1iva que el epiciclo anterior. Na.turalinentc, aquí las dos hi póté s i~ to.mb i ~ n resul t~tn cquipolen1es, él! lo que respecta :l l:ls ap3riencias.
Copyrighlcd maleria
40
A HOMBROS DE GIGANTES
Y e n medio de todo permanece e l Sol. Pues ¿quién en este bell ísimo te mplo pondría esta lámpara en o tro lugar mejor, desde el que pudiera iluminar todo? Y no si n razón u11os le ll:.1n1:.1n lti111paüt del 1n11ndo. olros mente. otros rector. Trin1c.gisto le llc1r11ó <
rÍ\'ttda en 111a11cra :.1lgu11a ele los servic ios de l:.1 Lu11a. pero. co1no dice Aristóteles en De A11i· 111c1/ib11.~. la L11na tiene con la Ticno u11 grn11 1>arc11tcsco . A su \'CZ. lo.1 Tierra concibe del Sol)' se c111baraz¡:1 en un parto ílnu<.11.. Po r consig.11 ic 11tc. c nco11tnl1nos bajo cs t:.1 ordcn¡1ción un;:t ad111 irablc silllctría del 1111111do y un nexo scg 11 ro de ~1r111011íc.1 entre el lllO\•i 111ic11to )' lc.1 lo 11gitucl de lt1s órbit;:1s.
como no puede encontrarse de otro modo. ' Aquí es posiblc advertir al observador En olras palab1.1s. ::il constn1ir una teoría p.1ra d:tr razón tlc c.ua1ro coinci(fcntias que t"(uedaban inexplicadas en Ptolo1nco, a ~he r, 1) l:t ig.u:.ldad en1re el nlln1ero de ciclos en longitud y los citlos so1'1res. en los dos plane1as inferio· res: 2) la igualdad entre los ciclos solares)' la suma de los ciclos de anon1alfa y longitud, en los planetas superiores: 3) la s:1rJción :tngul:tr limitad:t cnlré ll.1cm.1rit) y Venus y el Sol ~ y 4) las conjunciones en el il(X>gCO y lns oposiciones en el perigeo de Salumó, J1ípi1cr )' ~1n.r1c, Copérnico h:t pr(>yecL::idt) los círculos cxcéntticos de \'cnu~ y f\.1crcurio en el círculo orbital de Ja 1ie1Ta, y además ha colapsado los tres epiciclos de Saturno. Jtípitcr y ~1artc sobre este mismo círculo. Es
HIPOTESIS COPERNICANA t;$
et
(:>el
Movimiento de ka Tierro a 180° Movimiento do Venus • 292'/iº l. Recordemos l:ls r:azones ptolcm:i.icos entre eJ rodio del epiciclo y el del círct•lo excéntrico.)' las e:<· ccnlricidade.s corrcspondienlcs.
~1lcrcurio
E1>it·ic/<,
E.:
22 °1,
60 60 60 60 60
\ 'enu:-;
43
~1ar1c
39•¡,
Jú1>iter
11 1/ : 6 1/i
Saturno
1 /.
f:.."<,:e111rit·it/1111
3 11/.a
6 21/s 3•1..
En el esquema ptolcn1aico es i1nposible caJculaJ' las mngni1udes rel:lli\•:ts de. Jos círculos excéntricos, ya. <1uc no hay ninguna 111ediJa co1nún a tollos ellos. Pero ahora que los círculos cxcéntric.."Os tle Mercurio y Je \ 1enus
y los epiciclos de
~·l:. n c.
J1ípitcr y S;;uurno han sido reducidos :ll círctilo orbit.al de la 1·ierr:;1, es f:ícil
Copyrighlcd maleria
41
NICOLÁS COPÉRNICO
s•1•' ').
••• ..• J( 11
~
\ 0<°"\
nten10 por qué aparece mayor la progresión y la re1rogmdación en Jí1pi1er que en Sa1urno y menor que en Nlan e. y a la vez mayor en Venus que en M ercurio.' Y por qué mi fl ujo y reflujo aparece más frecuen1emen1e en Sat urno q ue en JLípi1er y m(ts rarnmen1e en M;lrle y en Venus que en l'vl ercu rio.' Adem(ts, po r qué Smurno. Jú pi1er y Mane
calcular la$ n1agnitu
i1ales -.que o.hora so n los CJ>ici c l o~ de los planctus inlC· riores )' los círculos excéntricos de los superiores-, ya que, ¡>0r razón de Ja necesati:.1 con1ncnsura.bil idad en~ trc epiciclo y excéntrico. todos ellos son conn1cnsur.iblcs con el círculo orbit:il de la Tierra. As(. por cjcntplo.
si tom:1mos 1:1 distancia de k1 1icrr:1 al Sol como unidad, los pl:1nc1as. observarán las siguientes distanc ias apro~irn :idas respecto al Sol. ~·tc rcurio
\ 'enus
'"
>/,
Tic11·a J\·1arte
J '/ z
Júpiter Salurno
5 9
l. En los: tres plancl:tS superiores, los ángulos <1uc rnidcn la prtlgresión y la rc1rograd•1Ción :1p;1n.:n1cs 1iencn como \'érticc el centro
Copyrighlcd maleria
42
A HOMBROS DE GIGANTES
acrónicos están más cerca de la Tierra que en las prox imidades de su ocultación yaparición. Pero sobre todo M arte, cuando dura toda la noche (en oposición al So l ], parece igl1;:i lar c11 111agnilud a Júpilcr (distingt1 iblc sólo por su color roj izo). sin c111b;1rgo, en otro sitio se le cncucntrtl con dificult:..1d c11trc- lns estrellas de scg1111da r11:..1g11 itud. 1 busc{tndolc con una observaci ón c uidadosa por medio de scxt;mtes. Todo ello procede de Ja 111is1nt1 causa. que c-stá en el 1110,:i111 icnto ele la Ticrr:..t. Puc-s to q 11c 11ingt1n<.l de estas c-0s:..1s ap:..trccc en l:..1s tijas. dc11111cstra su i11n1cns;.:t altitud. lo <1uc t<.11nbién hace c1uc se dc.s,·anczca ante n11cstros ojos la órbit;:t del 1110\ ri111icnto anuc.11 y su i111agcn: porc1uc todo lo \'isi blc tiene :..1lgunc1 lo11gitucl dc11lro de 1111a distt1ncitt. 1nás allá de la cual no se vt:, co mo se demuestra en óµtic
11. DEMOSTRACIÓN DEL TRIPLE MOVIMIENTO DE LA T IERRA En consecuencia, como tantos y tan grandes testimon ios de las estrellas errantes concuerdan con la m ovi lidad terrestre. expondremos ahora tal movimiento en resumen, dc111ostr.:111do al 111cnos los fe116111enos apare111es 111ed ia11 1c el 111is1110 co1no l1i¡>Óle-sis. Es necesario i tir un trip le m ov imiem o. El prim ero, el que hemos d icho q ue e111 llamado vuxfh1µep Lvóv por l os gr iegos, el circu i to del d ía y de la noche, que se diri ge del ocaso al o rto alrededor del eje de la T ierra, en cuanto se cons idera q ue el mundo es llevado en la direcc ión o puesta, describiendo el c írculo equinoccia l, al que algunos llmntln equ id ial, im itando la sign i fi cación de los griegos, entre los que se llama 1
S:uunto rnás :t 1nenudo que llipiler, Júpi1er n1ás :'l 1nenudo que rv1::111e, a ~larle n1ás n rnenudo que es av:inl3da por \ 1cnus. y 3.\'ttnzada 111cnos a incnudo por \ 1cnus que por ~lcrcuri o. De :aquí que-la frccucnci:t de progresión)' retrogradación es1en en este orden. l. Scglí n el esquema ptolcmnico. sólo :i p..1.rtir de los c.nmbios de m.:ignitud del planctu ~·lar1c puede dedu-
cirse cuáles: son sus
<1s rcl:itivas : en el pc:1igeo y e l apogeo. pero scgt cs copernicano. se sigue de las distilncias relativa.... del planc.l:t ptrigeo :ipogto que cs.t la propor di aparente>íó¡>áóé
ÁÉ
íóéóíííóíéóííáíí•·•éá
áéáóúííéááíóáíáá
áóóíóóúáóíóáíáááíáóúíáíóóóíííí·ííáóííéóóáóíóúáíáñéé
áó
áóúíéáííááóíúááúááóáóóéíéééíóó¡íóí·íéóéíóíáñéó
<íóéíó
ÁÉ
ÍÍííóééóáéóúíááíéááááááíéááéñóíéáíúáúíáíúúááé<<áóúú
áíéááááí
ááááááúóá
<áááóñáóñáíáóáóíí<<áéááááíáááááíí
éáíáá
¡áááááüéíááíí
áíáá
áíáááááú
ÁÉ
éííááááéóáíáááó¡í
Ííéíáííüóááááííááíóíá
éíáíáááéúáááéíú
ííéáúíáúú<é·<<
•éíéááééáéáíáíóóááéóé
óíóéáíáúé
ÁÉ
áíáéááéáááá<áá
>
ááááóíááááóááéóááááó<í¡¡
íáíí
íóáóí
íóñ<•¡ó
í•
íúñé
<<<í
¡·>¡¡
··
¡
¡¡
ÁÉ
ó
ó
•
•
·
ÁÉ
ó
ó
•
·
•
ÁÉ
ó
¡
ó
•
·
•
ÁÉ
ó
Ááá
áíóéáéáíúá
áááéáá
ááááééááíáéááííáááíóíáí·íá·ííóá
ÁÉ
áááééúá¡>ááó
éááíóíáéééáááúóááíááááíóééááéááááóááéó
áááááóé<üáéáé
áááñó
á
áÚííÍéóíáñóááááúóááéáóáñíáééíáíáííááéáíéááíóíáóáíóáííé
ÁÉíáééáíá
ÁÉ
áíáóíá·Í¡úóí
íá••áéíóáóáíá
áéííúáíááóíáééóéí
áéáíáá<íáíááéááííááííáéíñáíáíéááúííéáááé
óú·í>
áéáóíé·éíé•Íóáéóíáíáíóíáááíáí
ááéáááááááóíáóááóáííííéáíéá¡éó
ÁÉ
áááóéíáíéáóáá·•í•íóááóááéíáááíáááíááááí
ííúáíáéí¡ííéí
á>áááááá<áéáá<Íááááé¡Íáíáéíááíáéáé¡á
¡óóíá¡óá¡ó
üáóéáííúáóááéóáéóí
ÁÉ
éááááááéáá
á
óááéééáááóáíéáéááéáááíá¡í
éááááéáááááéááíáíáíáéá
éáááíááá•íááíé
á
áóéááíáéááéíáááíáóí
íéáóáááéó
ááéíí¡ííáíúááíááóóóá
ÁÉ
ááááíá¡·¡á·ááíá
áááá
ááá
éáááááááííáéáíéáá¡óóáóíáááááóééááíááéááóáááá
áá
á
•¡áááí
áéú
éááíáááúáíáááááéáááááúééá
áááéíáéáéáíóúíóóááóó
ÁÉ
íáíéááá¡éáá
áá
á¡íéáá¡
ó<ááóúíúáéááóíéáóééáááéáúáááéíéáé
ííóáé
íéúóéáüí
áááéáááíáááíé<éá<<í•Íá·éáááéíáá
ááááéááááááíááááááóáááá·áíóüó
ÁÉ
áóáááóáééááéáíáá<íé
íáúáµéíááííéóóóóóÍí
é«»
Ííóíí<óíóéóííííóéíó
ÁÉ
áóáúóéííéúóí
ú
íéíéáá•éáé•éú
ÍÓÓíí<óíóááóííáóáíáñíí
·
ó
íí«ííé·¡íñ¡ó¡íéíí
áñíéóáóéíóí·íá
<íííéíñáéñáóíáóáááóííóáñííáóéíííóíáóíóíííéáóááóíóá
>ó<>
ÁÉ
ÁÍÍÓÓÁí¡é·
ñáííáó•ñéííááéáíóíííóííóíááí
í¡
·
íéóííááúáóíááéáááóáóúíúáóéáááá
ééáóóíáéí•íáí
íóíóí<>íááíáíáéáéááéáí·ááóóíááúáéááíááíóííííá
ÁÉ
·ª
<¡¡
•
•
•
•
•
•
•
•
•
ÁÉ
á
Á
Á
Á
íñóé<>
óéé«»<><><
ííú·•í>í«»·ó>>éííííóíéÍíéóíñáíñéíáéóíááñé·
éááó
ÓÓÓÍÍÉÍíóóéíóéóíóáíííí
ÁÉ
ííóéééíáóí
•
ó<
>ááúáéááááéóóíóáéóáááááúíó
ííííííííííí
ñóííñ
ííúóááááííá<íí
ÁÍéí«á»éáóííáóóíá¡>ííáíííóííóúííáééóíáííéáúíáéúí
ÁÉ
íúó¡á<·íó¡óí·
ííí·<Óó><¡í<á•
áííáíóíáááááóééáááóíóí
ÓÍÁÓÍíáóíááííó
ííííííñéíííéáíííáíáááááóáéáéíáíááóíóóííúáóíáó
óúííóóííííéáíóóííá
ÁÉ
éáéé
íáíéíáóúíáíóáóúáííúóíííááíííéüííúóóóíáíáóóííéííííó
ª
ó
ó
¡
ÁÉ
ó•ó
ó
·
&
·
óó
ó
¡
ÁÉ
ó•ó
ó
·
óó
ó
¡í
ÁÉ
ééóáé
íóíéóíááííé
Ííóóñéíóéííáó«»ááéíáíóáíóóíóéíááá«»í«»«»«»«é»éúíí
ÓÍÓÁííó«»é«•>éíóíééáá
ííóííéóíáííéíª·
íííóí
íúíéáóéóíóéáóáíííéáóáóáá
ÁÉ
áá
ÁÓÍíáíóááéááááíáóíóáííéóííéáéíóííííáéááóááéááííáéúúáéíéá
í
É
ó
íº
ó
ÁÉ
í
º
•ó
<
óóí·
·
·
ÁÉ
í•ó
<
•
Á
Á¡¡
í·Í
º
<
>>
áúáé¡éñá
íááóóñ
úíí
á
é<
íñé«»íáóíóóááííóáíáéóééóíáíááóáñííóééáííáéíéá
ÁÍÍÍóáóíéíáó
ÁÉ
íááóíéééóé·íéí•¡íííóííéí<ííóéáéáéááááííéóáéííáúá
éóóéóáíááéíúúééú
úéíúé
éé<á>>¡
í<á<óéí
áúááíóóííúíúíéóíéíáóíééíáóúíóóéóéá
ÚÓÓÓéí
ÁÉ
áóííóóíóó<
í
úíñíñóáíóéááóéíóíóíáúóááíéóáóíááóóóááóóéúñññíéáéóíúíóíéí
íúáúéííñáíéúóíóéí¡í¡áóíáéíé<óóí<íííóíúáíéóáéííéíááóéúíñíóéúóééíóáííóéóóííéíéíóíéáóúíúííéóóóóéíéóéáñíííé
í
ÁÉ
íáéñíí>¡í¡·óé<í·í·éáóóéé
í¡•óíóíáííí
íí>>í>í><•áóóííí·í>>
É
ó
íé>óíííí
í
Í
ííéóíóíóé¡ííóéíéóóá
íóíé
ÁÉ
ó¡>ó
•
•
ááá
áá
áá
>áá<>><>
áá
í
«É»
ááááá
é
ó
>
áú
>
á<é»
<·áéú
éáááé
••
Óúíóáááááá>
áááá
ñá
ÁÉ
ó
íáééááááí•
<á<<é
óí•óé•áá•
·
áá<áó
Ááú
ááú
ó
>
áíá
¿íóáóá
íáá>áá
á
ªÉ
>é
ÁÉ
ó
á>
ááí
áé
á<á
ááóááá
ó>á<ú
·
ó
>
á
áá<>
áá
óúú
úá¡é
ÁÉ
ó
ü<éúü>ó
á
ááá>·ñ
ó
>
«><>ó
í
íó
<>
••í
áí
áíí
<<á
ÁÉ
ó
¡íéíé
¡í<
á
ú
í
Áóéá•íá
ª
•
Á•
¡¡í
á
Í
ó
>
á
º
íííáí
ª•
Ó
ááá
ííáá·¡áá¡áá
ÁÉ
ó
éúá
Óá<><>
<á•ááú¡óááá•ú
á
Áéáá
í<óü•
á
>
<><
áá¡úú
¡
¡
ééó
óó<áéáá
ÁÉ
ó
á
úáá
•íáéá
ñáááááú
ééééáéáñé
áá>•
á<<
ááá
••
ó
>
É<>é>
é
é
¡ú
•
Áúá
á
ÁÉ
ó
¡
á•>»•<<>
ó<>í
ñ
ü
ñááá
á¡>
ªªª
ó
>
<>
ááí
¡á
ú
ó
ó<ááú¡á
áá
<>
1s>