CHAPTER 4
SPECIAL PRODUCTS & FACTORING 4.1. Special Products It is an alternative method in finding the products of an algebraic expression containing special forms of the factors. These products can be easily solved by applying the Special Product Formulas. The following are the different types of special products: I.
Product of a Monomial and a Polynomial (Distributive Property)
ab c d ab ac ad Illustrative Examples: 1. 2x4a 5b 6c 7d 8ax 10bx 12cx 14dx
2. 3x 2 y 3 6xy 4 5x 2 y 5 2x 5 y II.
= 18x 3 y 7 15x 4 y 8 6x 7 y 4
Product of the Sum and Difference of the Same Two
a ba b a2 b2 Steps to follow in the product of the sum and difference of the same two : 1. Square the first term, minus 2. square the last term. Illustrative Examples: 1.
2a 5b 2a 5b 2a2 5b2
2.
7x
2
4a2 25b 2
2
y 3 z 6a3b 2 c4 7x 2 y 3 z 6a3b 2 c4 7x 2 y 3 z 6a3b 2 c4
2
49x 4 y 6 z 2 36a6b 4 c8 3.
x
1/ 2
y
y1/ 2 x1/ 2 y1/ 2 x1/ 2
2
1/ 2 2
4. 4x 3 y 2 z 4 2x 4 3y 3 8x 7 y 2 z 4 12x 3 y 5 z 4
xy
8x 7 y2 z 4 12x 3 y5 z 4 8x 7 y2 z 4 12x 3 y5 z 4 8x 7 y 2 z 4
12x 2
64x14 y 4 z 8 144x 6 y10 z 8 5.
6773 70 3 70 3 702 32 1
4900 9 4891
3
y5z 4
2
III.
Square of Binomial
a b2
a b2
a2 2ab b 2
a2 2ab b 2
Steps to follow in square of binomial: 1. Square the first term. 2. Twice the product of the first and the last term. 3. Square the last term. Illustrative Examples: 1.
x 2y2 x 2 2x 2y 2y2
2.
3x
2
y 5 5w 4 z 3
3x y 2
5 2
2
x 2 4xy 4y 2
2 3x 2 y 5 5w 4 z 3 5w 4 z 3
2
9x 4 y10 30w 4 x 2 y 5 z 3 25w 8 z 6 3.
x
1/ 2
y1/ 2 x1/ 2 y1/ 2 x1/ 2 y1/ 2
x 2
1/ 2 2
2 x1/ 2 y1/ 2 y1/ 2
2
x 2x1/ 2 y1/ 2 y
4. 4x 3 y 2 z 4 2x 4 3y 3 8x 7 y 2 z 4 12x 3 y 5 z 4
8x y z
8x 7 y 2 z 4 12x 3 y 5 z 4 8x 7 y 2 z 4 12x 3 y 5 z 4 8x 7 y 2 z 4 12x 3 y 5 z 4 7
2
4 2
2 8x 7 y 2 z 4 12x 3 y 5 z 4 12x 3 y 5 z 4
2
2
64x14 y 4 z 8 192x10 y 7 z 8 144x 6 y10 z 8 5.
IV.
542 50 42 502 2504 42
2500 400 16 2916
Product of Two Binomials
x ax b x 2 a bx ab
ax bcx d acx 2 ad bc x bd
F First x First O I
}
Outer + Inner
L Last x Last Illustrative Examples: 1.
x 2x 3 x 2 3 2 x 23 x 2 x 6
2.
2a 5b 3a 4b 2 3a2 4 2 5 3ab 5b 4b 6a2 7ab 20b2
2
3x y 5w z 4x y 7w z 3 4 x y 3 7 5 4 w x y z 5w z 7w z
3.
2
5
2
4
3
2
5
4
5 2
4
2
3
5
3
4
3
4
3
12x 4 y10 w 4 x 2 y 5 z 3 35w 8 z 6 4.
5847 50 850 3 502 3 850 8 3 2500 5 50 24 2726
5.
3662 30 660 2 30 60 30 2 6 60 62 1800 420 12 2232
V.
Cube of a Binomial
a b3
a b3
a3 3a2b 3ab 2 b 3
a3 3a2b 3ab 2 b 3
Steps to follow in cube of a binomial: 1. Cube the first term 2. Three times the square of the first term times the last term 3. Three times the first term times square of the last term 4. Cube the last term Illustrative Examples: 1.
2a 5b3 2a3 32a2 5b 32a5b2 5b3 8a3 60a2b 150ab 2 125b 3
2.
x 2y3 x 3 3x 2 2y 3x 2y2 2y3
3.
3b j 4y z 3b j 2
3
4 3
2
3
3 3b 2 j
x 3 6x 2 y 12xy 2 8y 3
4y z 3 3b j4y z 4y z 2
3
4
2
3
4 2
3
4 3
27b6 j 3 108b 4 j 2 y 3 z 4 144b 2 jy6 z 8 64y 9 z12
2x y
2x 32x y 6xy 32x y 6xy 6xy
4. 2xyx 3y 2x 2 y 6xy 2 2
3
2
2
2x 2 y 6xy 2 2x 2 y 6xy 2 2
2
2
2 2
2
2
y 6xy 2
3
2 3
8x 6 y 3 72x 5 y 4 216x 4 y 5 216x 3 y 6 5.
133 10 33 103 3 102 3 3 1032 33 2197
3
1000 900 270 27
VI.
Product of Binomial and Trinomial Leading to the Sum or Difference of Two Cubes
a ba2 ab b2 a3 b3
a ba2 ab b2 a3 b3
Steps to follow: 1. Cube the first term 2. Cube the last term Illustrative Examples: 1.
2a 5b4a2 10ab 25b2 2a3 5b3
2.
3x
2
8a3 125b 3
y 5 5w 4 z 3 9x 4 y10 15w 4 x 2 y 5 z 3 25w 8 z 6 3x 2 y 5
5w z 3
4
3 3
27x 6 y15 125w12 z 9 3.
3b j 4y z 9b j 2
3
4
4 2
3
12b 2 jy3 z 4 16y 6 z 8 3b 2 j 4y 3 z 4
3
27b6 j 3 64y 9 z12
2x y 6xy
4. 2xyx 3y 4x 4 y2 12x 3 y3 36x 2 y 4 2x 2 y 6xy2 4x 4 y 2 12x 3 y 3 36x 2 y 4 3
2
2 3
8x 6 y 3 216x 3 y 6
c d 2cd c d 2cd c d 4c d 16c d c d 4c d c d 4c d 16c d c d 4c d
5. cdc 2d c2 d 2cd2 c8 d4 4c6 d6 16c4 d8 2
4
2
2
2
2
4
2
8
4
8
6
4
6
6
4
6
8
4
4
8
2 3
2
4 3
c12d6 64c6 d12 VII.
Square of a Trinomial
a b c2
a2 b 2 c2 2ab 2ac 2bc
Steps to follow in square of a trinomial: 1. Square the following: 1st, 2nd and 3rd 2. Twice the product of the following: a. 1st and 2nd b. 1st and 3rd c. 2nd and 3rd
4
Illustrative Examples: 1. x 2y 3z x 2y 3z 2 x 2y 2 x 3z 2 2y 3z 2
2
2
2
x 2 4y 2 9z 2 4xy 6xz 12yz 2. 2a 5b 4c
2
2a 5b 4c 22a 5b 22a4c 2 5b4c 2
2
2
4a2 25b 2 16c2 20ab 16ac 40bc
6ax 3ay 15az 6ax 3ay 15az 6ax 3ay 15az 6ax 3ay 15az 26ax 3ay 26ax 15az 2 3ay 15az
3. 3a 2x 2 y 3 5z 4 6ax 2 3ay 3 15az 4 2
3
4
2 2
2
3 2
3
3
4 2
4
2
2
4 2
3
3
2
4
4
36a2 x 4 9a2 y 6 225a2 z 8 36a2 x 2 y 3 180a2 x 2 z 4 90a2 y 3 z 4
x y 2a x y 4a x y 4a x y 4a x y 4a x y 4a x y 4a x y 4a x y 4a x y 4a x y 4a 2x y 4a x y 2x y 4a 2 4a x y 4a
4.
2 2
3
6
2
2
6
2 2
6
3
3
2
4
2
2
2
3
2
3
6
4
2
2
3
4 2
6
4
2
6
2
3
2
2
6
2
4 2
3
4
4
x12 y 4 16a4 x 6 y 2 16a8 8a2 x 9 y 3 8a4 x 6 y 2 32a6 x 3 y x12 y 4 24a4 x 6 y 2 16a8 8a2 x 9 y 3 32a6 x 3 y 5.
542 50 3 12 502 32 12 2 50 3 2 50 1 2 3 1 2500 9 1 300 100 6
2916
5
4.2. Factoring Factoring is the reverse process of special product formulas. A polynomial with integral coefficient is completely factored if: 1. the coefficients are relatively prime, that is, it has no common factor except 1, and 2. it cannot be expressed as the product of two polynomials of lower degree and apply any of the following types of factoring listed below.
Factoring
Common Monomial Factor
Number of
Two (2)
Difference of Two Squares
Three (3)
Perfect Square Trinomial
Sum or Difference of Two Cubes
Four (4) or More
Non - Perfect Square Trinomial
Factoring by Grouping
Note: To check the validity of your answer, use the special product formulas. Basic Types of Factoring I.
Common Monomial Factor
ab ac ad ab c d Illustrative Examples: 1. 8ax 10bx 12cx 14dx = 2x4a 5b 6c 7d 2.
18x 3 y 7 15x 4 y 8 6x 7 y 4 = 3x 3 y 4 6y 3 5xy 4 2x 4
3. 25a4b 3 c7 40a6b 2 c9 30a8b 5 c4 5a4b 2 c4 5bc 3 8a2 c5 6a4b 3
6
II.
Difference of Two Squares
a2 b2 a ba b Steps to follow in factoring the difference of two squares: 1. Extract the square roots of the first and the second ; 2. express the sum and the difference of the roots as factors. Illustrative Examples: 1. 4a2 25b 2 2a 5b 2a 5b 2a 5b 2
2
7x
6a b c y z 6a b c 7x y z 6a b c 64x y z 144x y z 16x y z 4x 9y 16x y z 2x 3y 2x 3y 2x y 32xy 2xy x 16y 2xy x 4y x 4y 2xy x 4y x 2y x 2y 2
2. 49x 4 y 6 z 2 36a6b 4 c8 7x 2 y 3 z
3.
14
4
8
6
10
2
3
8
6
6
4.
5
5
4
III.
2
2
4
3
4
8
4
8
8
4
2
3
4 2
2
3
3
2
4
6
4
3
2
2
4
2
3
2
2
Sum or Difference of Two Cubes
a3 b3 a b a2 ab b2
a3 b3 a b a2 ab b2
Steps to follow in factoring the sum or difference of two cubes: 1. To obtain the first factor, extract the cube roots of the first and the second of the given expression. 2. To find the second factor, a. from the first factor; square its first term, b. take the opposite sign of the product of the first and second , and c. square its second term. Illustrative Examples:
5w z 5w z 9x
1. 8a3 125b3 2a 5b 2a 5b 4a2 10ab 25b2 3
3
3x
2. 27x 6 y15 125w12 z 9 3x 2 y 5 2
y5
3
4
4
7
3
3 3 4
y10 15w 4 x 2 y 5 z 3 25w 8 z 6
4y z 3b j 4y z 9b j 12b jy z 16y z 375x y z 1029x y 3x y 125x z 343y 3x y 5x z 7y 3x y 5x z 7y 25x z 35x y z 49y 2a b 2ab 2aba b 2aba b a b 2ab a ba ab b a ba ab b
3. 27b6 j 3 64y 9 z12 3b 2 j
3
2
4.
5.
8
3 12
7
2
7
3
12
6
4 3
3
4
2
3
2
3
4 2
3
6 12
2
6
4
6
9
4
3
3
2
IV.
2
3
2
4
3
2
8
8
3
4 3
2
2
3
4
3 3
6
3
2
2
Perfect Square Trinomial
a2 2ab b2 a b
a2 2ab b 2 a b
2
2
Steps to follow in factoring perfect square trinomial: 1. Extract the square roots of the first and the third of the given expression ( that are perfect squares). 2. Raise the whole expression by 2 or squared, 3. Check the middle term of the given expression (term that is not a perfect square) by solving twice the product of the 1st and 2nd obtained in step 1. Illustrative Examples: 1.
x 2 4x 4 x 2
2
Checking: Middle term = 2 times the product of the first & second
4x 2 x 2 4x 4x 2.
x 2 4xy 4y 2 x 2y
2
Checking: Middle term = 2 times the product of the first & second
4xy 2 x 2y 4xy 4xy
8
3. 9x 4 y10 30w 4 x 2 y 5 z 3 25w 8 z 6 3x 2 y 5 5w 4 z 3
2
Checking: Middle term = 2 times the product of the first & second
30w 4 x 2 y 5 z 3 2 3x 2 y 5 5w 4 z 3
30w4 x 2 y5 z 3 30w4 x 2 y5 z 3
4. 2ab 2 24abc 72ac 2 2a b 2 12bc 36c2 2a b 6c 5.
V.
2
x y2 6 x y 9 x y 32 x y 32 Non - Perfect Square Trinomial
x 2 a bx ab x ax b
acx 2 ad bc x bd ax bcx d
Illustrative Examples: 1. x 2 5x 4 x 4x 1 Possible Factors
Product a b
Sum a b
Remark
2&2
22 4
22 5
rejected
4&1
4 1 4
4 1 5
accepted
2. x 2 x 6
x 3x 2
Possible Factors
Product a b
Sum a b
Remark
–6 & 1
6 1 6
6 1 1
rejected
–3 & 2
3 2 6
3 2 1
rejected
3 & –2
3 2 6
3 2 1
accepted
3. 6a2 7ab 20b2 2a 5b 3a 4b Possible Factors
Sum of the Product of Outer & Inner
6a 5b a 4b 2a 5b 3a 4b 2a 5b 3a 4b
6 4 51ab 7ab 24 53ab 7ab 2 4 53ab 7ab
9
Remark rejected rejected accepted
4. 12x 4 y10 w 4 x 2 y 5 z 3 35w 8 z 6 3x 2 y 5 5w 4 z 3 4x 2 y 5 7w 4 z 3
Sum of the Product of Outer & Inner =
Possible Factors
2x y 3x y 3x y
4x y 4x y
Middle Term
2
5
5w 4 z 3 6x 2 y 5 7w 4 z 3
2
5
5w 4 z 3
2
5
5w 4 z 3
2
5
7w 4 z 3
2
5
7w 4 z 3
2 7 56w x y z 3 7 54w x y z 3 7 54w x y z 2
5
3
w 4 x 2 y 5 z 3
rejected
4
2
5
3
w 4 x 2 y 5 z 3
rejected
4
2
x
x
Remark
4
5. 5x10 y 10x 6 y 5 15x 2 y 9 5x 2 y x 8 2x 4 y 4 3y 8
y x
5 3
w4 x 2 y 5 z 3
accepted
5x 2 y x 4 y 4 x 4 3y 4 5x 2
2
y2
2
y2
4
3y 4
5x 2 y x y x y x 2 y 2 x 4 3y 4 VI.
Factoring by Grouping
ax ay bx by a bx y Proof:
ax ay bx by ax ay bx by a x y b x y x y a b a bx y Illustrative Examples:
x 4a 5b 3y 4a 5b 4a 5b x 3y b x 27b y c x 27c y b x c x 27b y 27c y x b c 27y b c b c x 27y b c b c x 3y x 3xy 9y b cb cb c x 3y x 3xy 9y
1. 4a3 x 2 5b 2 x 2 12a3 y 3 15b 2 y 3 4a3 x 2 5b 2 x 2 12a3 y 3 15b 2 y 3 2
2.
4
3
2
3
4
3
2
4
3
3
4
4
2
3
3
2
3
4
4
2
2
2
3
3
4
4
4
2
2
2
3
4
4
3
3
10
2
3
4
3
2
2
2
3
4
3
3. x 2 6xy 9y 2 4 x 2 6xy 9y 2 4 x 3y 2 2
2
x 3y 2x 3y 2 x 3y 2x 3y 2
4. 25 4x 2 20xy 25y 2 25 4x 2 20xy 25y 2 5 2x 5y
5 2x 5y5 2x 5y 5 2x 5y5 2x 5y
11
2
2