REINFORCED THERMOSET PLASTIC
CORROSION RESISTANT EQUIPMENT
TABLE NMI-2
normal to the
WALL THlCMESS IN A HORIZONTAL TANK
Mahdional
Thicm,
Coordinate
in.
plane; i.e.. the meridionnl dispIacerncnts
vanish ar the plane.
NMI-330 Design Criterion Given the loads, boundary condirions, and the thickness distribution in Fig. NM 1-3. BOSOR4 calculated the meridional, circumfercntiaI. and shear stresses on the inner and outer surfaces along a series of meridians. The design criteria in Appendix M-5 dc~eminewhcthcr the set of stntss components at a point conformsto the Standard. For Type I laminates, the criteria educes to
Equation (13) defines an al1owable stress intensity
In this case, X = 16,000 psi and R, = 8. Thus. S = 2000 psi. Thc stresses computed by BOSOR4 were substituted into Eq. (14) and compared to h e allowable intensity for H large number of points on the vessel. The first try was with thickness computed from the formulas of Subpn 3A for a venical vessel with a p ~ s sure equal to ihe pressure at the bottom of [he horizontal
LamInatlon Sequence
tank. 19.76 psig. The resulting head thickness i s 1.16 in. (using a design factor of 10) and the sidwrd thickness is 0.65 in. It is obvious that these are tm thin, especially at h e saddles, bur by starting ux, thin and increasing selected thicknesses with each iteration, one amves at a reasonable design, The t and knuckle ~inlorccmemused for his trial were the standard designs. Figum NMl-6 to NMI-10 give the stress intensity distributions dong a number of vessel meridians for thc initial uial. The abscissa of the graphs is the arc length dong the meridii, measured from the left (center) of the lefi head, as shown in Fig. NM1-3. The angles follow the same convention as in ihe pressure distributions. The smss intensitits were computed using Eq. (1 4). The distribution along the 90 deg. meridian (Fig. NM 1-8) exceeds the allowable intensity in both the buckle and saddle regions. After a numkr of iterations, the thicknesses given in Table NM 1-2 were obtaintd. They resuli in the stress distributions graphed in Figs. NMl-I 1 to NMI-15, which show that the allowabIe stresses are s8sEe.d everywhere. The maximum stress intensity is 1900 psi and mcurs in the knuckle along the 90 deg. meridian. The lamination sequences do not correspond exactly to the thicknesses, because they have k e n rounded up to h e next whole layer. They assume 0.043 in. per ply of mat and 0.01 in. for a v e l ply.
RElNFORCED THWMOSET PLASTIC CORROSiOM RESISTANT EQUIPMENT
RElNFDRCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
-
ASME RTP- 1 1995 EDITION
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
REINFORCED THERMOSET PLASTIC CORROSION RESISTAMT EQUIPMENT
IU
c
0 -.'I)
f
ASME RTP-1-19B5 EDITION
REtMFORCED THERMOSET PLASTIC CORROSIOW RESISTANT EQUIPMENT
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EOUIPMENT
ASME RTP-1-1995 EDITION
ASME RTP-1- 1995 EDITION
REtNFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
RElNFdRCEO THERMOSET U S T I C CORROSION RESISTANT EQUIPMENT
ASME RTP-1-1995 EDITION
I
25
1
50
I
75
I
100
I
125
I
150
Merldlonnl Dlstanco, in,
FIG. MM1-14
STRESS ALONG 135 DEG. MERIDIAN, FINAL TRY
I
175
1
200
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
ASME RTP- 1- t 995 EDlTlOM
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
ASME FIT?-1
- 1995 EDITION
NONMANDATORY APPENDIX NM-2 DESIGN OF INTEGRAL BODY FLANGES
NM2-100 SCOPE
This Appendix provides a procedure for the &sign of Aat-face flanges that utilize full-face gaskets. la) For each of 14 flanges ranging in size from 24 in. to 144 in. inside diameter, a specific bolt size, number of bolts. bolt circle, and outside diameter are set forth, Each of these geometries will cover pressure up to 30 psig f 3 psig with no change other than flangethickness and hub height- All bull circles are sufficiently large to preclude encroachment into the hub reinforcement by back spot facing for flange bolting washers. (b) For thc convenience of the s of h i s Standard. a table is provided wherein the ~~ariables of shell thickness (thickness of hub at small end go), flange thickness, and hub reinforcement height are set forth for each of h e 14 flange sizes for pmsure ranges of 0 to 5 psig, 5 to 12 psig, 12 to 19 p i g f 3 psig, 19 to 24 psig f 3 psig, nnd 24 to 30 psig f 3 psig. A table covering recommended body flange bolt torque is also ptovidod. {c} A nomenclature section, design pmcedurt midmce sheet. W y flange dimension table, figures and tables coveting various design factors, and a design exampIe of a typical flange are provided.
NM2-200 NOMENCLATURE The fallowing symbols are used in the f m u l a s for the design of flat face body Ranges (see Fig. NM2- 1). A = outside diameter of flange, in. AD = cross-sectional area of bolts using the root diameter of the thread or diamerer of unrhmaded
ponion, whichever is kss, in.' A, = total required cross-sectional area of bolts, in.' n = nominal bolt diameter, in. B = inside diameter of flange, in. b = effective gasket ort- surface seating
width, in.
C = bolr~irclediamerer, in.
d = shape factor = (u/v)rh0>cgol2 dl = bolt hole diameter, in. e = shape factor = F/h, F = shape factor ( f m Fig. NM2-3) f = hub stress correction factor (from Fig. NM25); for calcula~edvalues less than 1, use f = 1 C = diameter at location of gaskt load reaction, in. go = thiclurtss of hub at small end, in. g, = thickness of hub at baek of flange, in. = go r/2 H = total hydrostatic end fom, Ib
+
= 0.7854@P HD = hydrostatic
end force on a m inside of flange, lb HG = gasket I d , operating lYiy = compression load rcquired to seat gasket outside G diameter Hp = total t--surface compression load, Ib = 2bxGmp = H - HD Hi = total adjusted t--surface compression for full-face gashed flange, Ib = (hG/hb>Hp H, = difference between total hydrostatic end force and the hydmsiatic end force a m inside of flange. Ib (N) =H-HD h = hub length. in. ha = radial distance from bolt circle to the circle on which H, acts, in. Bg = bolt circle on which HG acts. in. hG = radial distance from b l t circle to the circle on which HG acts, in. h-' - lever arm It, = shape factor, in. = (Bg,)ln
h f = radial distance from bolt circle to the circle on which H, acts. in. K = ratio of outside diamerer of flange to inside diameter ofAange = A/B
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
ASME RTP-1- 1995 EDITION
L
= shape factor = I(re + l)/t] + r31d M = unit load. operating, Ib = Mo/B
P = 30.0 psi y=50psi
Ma = component ofmoment due to Ho,in.-lb =H
~
h
~
MG = component of rnomerrt due to HG operating, in.-lb
Assume: d B= 8.06 in.' d, = aJ' /ain. go = % in.
h
=
4% in.
n = #
s, = 25,000 psi
= H&;
Mo = total mmcnt acting upon flange. for the oper-
S, = 25,000 psi
ating conditions, in. -1b MT = component of moment due to HT, in.-lb
SI, = 3,000 psi r =
17A6 in.
Calculate h i t , flange, and hub stresses:
= H7hr
m = gasket factor
fcr, = shape factor = 4/3 re 1 n = number of bolts P = design pressure, psi R = radial distance from bolt cimk to point of intersection of hub and back of flange, in. S, = allowable bolt stress at atmospheric tempcrature, psi Sb = allowable bolt stress at design tempemlure, psi Sf, = allowable design stress for flange material at
+
design temperature, psi
SH = calculated longitudinal
hb
= (A
- C)/4 = (78.5 - 77)14 = 0.375 in.
G
=C
- ZhG = 77 - (2)(1.250) = 74.5 in.
b = O.IS(C
- B) = 0.25(77
-
72) = 1.25 in.
in hub, psi S, = calculared radial stress in flnnge, psi SKm = calculared radial stress a1 bolt circle due to reverse moment. psi Sf = cdculared tangential swss in flange, psi T = shape factor involving K r = flange thickness, in. U = shape factor involving K V = shape factor IY = average flange bolt load. ib IVm, = required bolt load, operating conditions, Ib IRn, = required bolt load, gaskt seating. Ib Y = shape factor involving K y = gasket ort- surface unit seating load. sttess
psi r = shape factor involving K
NM2-300 EXAMPLE CALCULATION Check f l ~ s e for s a 72 in. full-face flange, given the following (see Fig. NM2-6): A = 78'h in. B = 72 in. C = 77 in. m = 0.50
H = 0.7854~%= 0.7854 x (74.5)' x 30 = 130.775 Ib
n
REINFORCED THERMOS€T PLASTIC CORROSION RESISTANT EQUIPMENT
A,
ASME RTP- 1-1 995 EOmON
equals greater of Wm,IS, or I Y . , IS,:
K = AIB
= 78.5172
= 1.090
63,388125,000 = 2.536 < 168.809125,OOO = 6.752 in.'
T = 1.88 ( f m Table NM2-2) A, = (64)
in. diameter bolts
= (64)(0.126)
Z
= 11.63 (from Table NM2-2)
= 8.064 in.'
Y = 22.44 (h Table NM2-2)
gt = (112) t go = (1.4375121
+ 0.75
= 1.469 in.
hlho = 4.517.348 = 0.612
F = 0.808 (from Fig. NM2-3) h~ =
+ 0.5g,
= 1.031
+ (0-5M.469)
= 1.766 in.
V hr = 0 S ( R + gl
= O.S(I.031
= 0-2OS (fmm
Fig. NM2-4)
+ hG)
+ 1.469 + 1.25) = 1.875 in.
f = 1.0 (min.; from Fig. NM2-5)
e = Flho = 0.Wt7.348 = 0.110
Approximation of Required Thickness t
h i = (hdf;i)l(hG+ it;;) = (1.25 x 0.375)/(1.25
r = o.~~(MY/s,J"
+ 0.375) = 0.2885 in.
= (0.29)(3.220
X 22.4413,000)~"
= 1.423 in. (usc 1.4375 in.)
REINFORCED f HERMOSET PLASTIC CORROStON RESISTANT EQUIPMENT
-
ASME RTP-I 1995 EDITION
NI = j j u
+ 1 = (1.33)(1.4375)(0.110) + 1 = 1.210
Ic) mngential stress in flange:
= (22.44)~.220)1(1.437512 = -283 psi
SUSS Calculations (a) longimdinal stress in hub:
< 3.000 psi
(d) greater of 0.5(SH 0.5(2399
> 0.5(2,399
+ SR)or 0.5(SH f S7):
+ 3.031)
= 2.715 psi
+ 283) = 1,341 psi
2.715 psi < 3.000 psi
= 2.399 psi < 3.000 psi
(61 radial stress in flange:
- (1 1.63)(3.03 I)
(e) radial suess at bolt circle:
= (1.21 x 3.220)/[0.622 X (1.4375)'~ = 3,031 psi
> 3,000 psi
-
(6)(15.702) (1 -4375)'
(1 X
77
- 64
X
0.625)
= 225 psi
REINFORCED THERMOSET PLASTIC CORROSION RESlSTANf EQUIPMENT w Wah W a u Guhu
hrign at FIal-Fau tnlqml aady R
B ~ Cakdmthnr W
-n*
oasisn-
P
Pa
-rn-
T
*F
Am-te~lwraass
T
'F
wm Whrq material
Gamkal mirbrial
Ds*n
S1tww
8-C-ma-
-
mu.
Bo16ne
AW S . temp
=
Rwsrw
s.
p
wm,
-
=
hD- R + O.Ql
L
hr
Long hub S,,
-
-
+ H;= Wml
-
s,
s,
W-0.5&
+ Ads, =
O.61R
-
pl + hol
-
W In-
win.
-
he&
hc
-
Lb
Lever A m
-
h;=--
m
Gisatw dO.SlS,
M I - H,h,-
*c-lb
Mg-MO+ M I -
m.a
Me = Hah;
n-b
In.*
-
Shrwcammnil K-Am=
r
-
- IS.
Sd or 0.54s"
4
f -
d
0&8=
Sfi =
-
V-
-*-
l?arms
-
(1 -1
U
d=;h&i-
~ ~ 5 4 -. ba.trn+&
M
h 1 bIU
077 t4n
"T
c-
A
-
- (E?l &I8
~= ~ a29c s m a ~ t r l i c k r r
"D G*
'LC
'f~
-
8-F&=
#.
1
U
w9d1-' =
I-
nk-,*--
-
F-
d
-
Y
a-
- nd,l
R
4
z=
d
RadasmusatheIf~
?lrC
CondJ
ih
-
T
-I
Mn-
ih
hii
-6
-
H&
m.
fMl~pf
sb
s+
+ H,
=H
L
S t n r s cddatbns
Tnng. N.S, = 1 Y W )
-
-
~b
miililg. S* = tl, Ma?
3,
Ib
m
At
tb
n,- w - n -
5 . p ~ L
b
A, = p r a n s r o f ~ o r -
mmwc
s*
in.
-
81-
sweu
0.2SlC-81 =
Ib
H =0.7896'~
+I7-H-Hn-
mOmsnt
-
H,-2brGmP-
psi
DSI
0.785 dB'P
4
lb
F l w Lolda H,
In.
-
4
Wq-brCiv*U,-
5.
G ~ * k # tFactors w=
ihd&llbrGy!
A-C &--=
S,,
1-
AIfowablo
46--1
mnu
Km
--
C-8
Lwn
la11 kar
..
-
M, L
3
-.3
L
m+1
T
e
-
in.
-'rd =
GENERAL NOTE: This form may be reproduced and usad without written permission fmm ASME if used for purposes other than republication.
FIG. NM2-I
DESIGN OF FLAT-FACE INTEGRAL BODY FLANGES WITH FULGFACE GASKETS 197
-
z 7
m
'P d
I d
CD
TABLE MM2-1 TYPICAL BODY FLANGE DIMENSIONS AND RECOMMENDED BOLT TORQUE VALUES FOR RTP BODY FLANGES B Mlnimum Inside Olarneter, in.
A Minlmum OutsMs Diameter, in.
C Bolt CIrcle blameter, In. INotes It ), (211
Dndgn Pressum 6-20 psi Bolt Slze. In.
Bolt Hole Oiamster. In. lNote (311
Deslgn Ressure 26-30 psl Bolt She, In.
Bolt Hole Diameter, In. lNote 1311
ln
cn
Numb
of 8&r
Torque Requlwd. ft-lb
GENERAL NOTES: in) Tl-te above torque values were celculated using well Iubrlcatad law alloy carbon steel bolts. Ibl For flengas havlng surface Irregularities and requiring higher torque values to effect sealing, torque3 can be increamd to 28 ft-lb for 'h in. diamoter bolts, SO ft-1b for % in. diameter bolls, and 83 ft-lb for 3/. in. dlamatsr bolts without lneurrlng flanga damage. [c) Lower torques can be used for lower pressure appllcations. Id) These dimensions were used in deslgning the flanges shown In Table NM2-3, Alternate flange geomatrlas can be considered using tho design method illuslraled In this Appendix. NOTES: 11) 0,06 In. (ASMEIANSI 816.5). (2) 0.06 In. eccentricity between bolt clrclo and center of shell, {3) f 0.03 in. center to center of adjacent bolt holes {ASMEIANSI 018,61.
3 0 r
n 0
a
ram
g5 t.
6
6a
@ 5i = R
e % 3q m?
i 0
REINFORCED THERMOSET PLAST1C CORROSION RESISTANT EQUIPMENT
FIG. NM2-2
VALUES OF T, U, Y, AND Z ( Involving K )
REINFORCED THERMOSET PLASTIC CORROSfOPl RESISTANT EQUIPMEMT
TABLE MM2-2
VALUES OF T, Z, Y, AND U (FACTORS INVOLVING K1
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
TABLE NM2-2 VALUES OF T, 2, Y, AND
ASME RTP-1-1995 EDITION
U (FACTORS INVOLVING K ) (CONT'D)
REINFORCED THERMOSET PLASTIC CORROSION RESlSfAMT EQUIPMENT
ASME RTP-1-1495 EDITION
TABLE NM2-2 VALUES OF T, 2, Y, AND U [FACTORS INVOLVING K ) (CONT'D) T
I
Y
1.301
1.80
3.89
7.53
1.302 1.303 1.304 1.305
7.80 1.80
3.88 3.87
1.80 1.80
3.86 3.84
7.M) 7.48 7.46
1.308 1,307 1.308 1.309 1.310
1.80
1.311 1.312
1.313 1.314
K
U
8.27 8.24
8.22 8.20
7.44
8.18
3.83 3-82 3.81
7.42 7.40 7.38
8.13
3.80 3.79
7.36
8.11 8.09
7.34
1.79
3.78
1.79
3.77
3.76
1.315
1.79 1.79 1.79
7.32 7.30 7.28
1.318
1.317
1.80
1.79 1.79 t.79
I
K
T
1.351 1.352 1.353 1.354 1.355
1.78 1.78 1.77 1.77 1.77
2
3.42
3.42 3.41 3.40 3.39
Y
U
7.21 7.19
3.05
5.88
1.4061.75 1.407 1.75 1.408 1.75 1.4091-75 1.410 1.75
3.05 3.04
5.87
1.411
1.75 1.412 1.75 1.413 1.75 1.4141.75 1.4151.75
3.02 3.01
1.416 1.417 1.410 1.419 1.420
6.53
7.25 7.23
3.38 3.38
8.07
3.35
6.47
7.17 7.18 7.14 7.12 7.11
8.05
1.361 1.77
3.35 3.34
6.45
7.09
8.02
6.44 6.42
7.08
3.32
6.41 6.39
7.98
3.74
7.26 7.24
7.96
1.362 1.77 1.363 1.77 1.384 1.77 1.3651.77
1.79
3.73
7.22
7.94
1.386 1.77
3.31
6.38
7.01
1.79 1.79 1.79
3.72 3.71 3.70
7.20 7.18 7.16
7.92
1.77 1.77 1.77
3.30 3.30 3.29
8.37
7.00
6.36
6.98
1.79
3.69
7.14
7.85
1.367 1.368 1.369 1.370
1.77
3.28
6.34 6.32
6.97 6.95
1.321
1.79
1.322 1.323
3.88 3.67
7.12 7.10
7.83 7.81
3.67
1.325
t.79
3.65
7.09 7.07 7.06
7.79
1.324
1.79 1.79 1.79
1.328 1.327 1.328
1.79 1.79 1.78
3.63
1.329
1.78 1.78
3-61
7.03 7.01 7.00 6.98
3.00
6.96
1.331 1.332 1.333 1.334 1.335
1.78 1-78
3.59 3.58
1.78
3.57
1.78 1.78
3.57
1.338 1.337 1.338
1.78 178
3.55
1.78
1.339
1.78 1.78
3.53 3-52 3.51
1.78 1.78
3.51 3.50
1.318 1.319 1.320
1.330
1.340
1.341 1.342 1.343 1.344 1.345
1.346
1.347 1.348 1.349 1.350
3.75
3.66
3.64 3.62
3.56 3,54
1.78
3.49
1.78 1.78
3.48
1.78 1.78 1.78 1.78 1.78
3.46 3.46 3.45 3.44 3.43
3.47
8.00
7.89 7.87
1.371 1.77 1.372 1.77 1.373 1.77 1.374 1.77
3.33 3.32
3.27
Y
5.93 5.92
6.57 6.55
6.49
Z
3.08 3.07 3.07 3
7.27
1.3561.77 1.357 1.77 1.368 1.77 1.3591.77 1.360 1.77
3.37 3.36
T
1.401 1.75 1.402 1.75 1.403 1.75 1.404 1.75 1.405 1.75
6 1 6.60 6.58
6.52 6.50
K
7-06 7.04 7.03
6-31 1.93 6.30 6.91
1.75 1.75 1.75 1.75 1.75
3.04 3.03 3.02
5.90 5,89
U
6.50 6.49 6.47 6-46 6.45
5.88 5.84
6.44 6.43 6.41
5.83 5.82
6.40 6.39
5.81
6.38 6.37
3.01
5.80 5-78
3.00
5.77
6.35 6.34
3.00
5.76
6.33
2.99
5.75 5.74
6.32 8.31 6.29
2.98 2.98 2.97 2.97
5.72 6-71 6.28 6.70 6.27
2.95-
5.69 5.68 5.67
2.95 2.94
5.68 5.65
2.94
5 5.63 5.62
1.421 1.75 1.422 1.75 1.423 1.75 1.424 1.74 1.425li74
2.96 2.96
8.28 6.25 6.23 6.22
1.375 1.77
3.27 3.26 3.26 3.25
7.73
1.376 1.77
3.24
6.24
7.71
1.377 1.77 1.378 t.76
3.23
6.86 8.84 6.82
1.426 1.74 1.427 1.74
3.22
6.22 6.21
1.428 1.74
2.93 2.92
1.379 1.76
3.22
6.19
6.81
7.65
1.380 1.76
3.21
0.18
6.80
1.429 1.74 1.430 1.74
2.92 2.91
5.61 5.60
6.94
7.63
6.17 6.16
6.79
5.59
6.14
2.90
6.14
6.75 6.74 8.73
1.431 1.74 1.432 1.74 1.433 1.74 1.4341.74 1.435 1.74
2.91
7.81
1.381 1.76 1.382 1.76
3.20
6.92 6.91 6.89 6-87
5.58 5.57 5.58
8.13 6.11 6.10
5.55
6.09
6.85 6.84 6.82
7.53
1.436 1.74 1-437 1.74
2.88 2.88
5.54
6.08
6.70
5.53
2.87 2.87
5.52 5.51 5.50
8.07 6.05
7.77 7.75
7.69 7.67
7.59 7.57 7.55
1.383 1.78 1.3841.76 1.385 1.76
1.386 1-76 1.387 1.76
3.20 3.19 3.18 3.18
6-28
6.90
6.27
6.89
8.25
6.87
6.13
6.12
6.77
7.50 7.48 7.46
1.3881.76
1.3891.76 1.390 1.76
3.17 3.16 3.16 3.15 3.15
8.77 8.78 6.74 6.72 6.71
7.44
1.391 1.76 1.3921.76 1.393 1.76 1.3941.76 1.3951-78
3.14 3-13 3.13 3.12 3.11
6.02 6.01 6.00
6.63 8.61 6.60 6.59
6.69
7.35
6.99
6.58
6.58 8.55
6.63
7.28
3.10 3.10 3.09 3.08
5.98
6.66 6.65
7.33 7.32 7.30
1.396 1.76 1.3971.70
3.11
8.68
6.81
6.79
7.51
7.42 7.41 7.35
7.37
1.398 1.75
1.3991.75 1.4001.75
6.20 6.19 6.17 6.16 6.15
6.11 8.10 6.08 6.07
6.68
1.4381.74
8.67
6-06
6.66
1.4391.74 1.440 1.74
6.05
6.64
1.441 1.74
2.86
8.04
1.4421.74 1.443 1.74 1.4441.74 1.4451.74
2.85 2.85
5.49 5.48
8.02 6.01
5.47
2.84 2.84
5.46 5.45
6.00 5.99 5.98
1.446 1.74 1.447 1.73 1.448 1.73 1.4491.73
2.83
6.44
2.82 2.82
5.42
5.97 5-96 5.95
5.41
6.94
1.4501.73
2.81
5.40
5.93
5.96
6.72
2.90 2.89 2.89
6.21
5-95 6.53 5.94 6.52
2.86
2-83 5.43
6-04
6.03
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
TABLE NM2-2
ASME RTP-1-1995 EDITION
VALUES O f T, 2, Y, AND U (FACTORS INVOLVING K ) (CONT'D}
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
ASME RTP1-1995 EDITION
FIG. NM2-3 VALUES OF F (Integral Flange Factors)
REINFORCED THERMOSET PLASTIC CORROSION RESISTANT EQUIPMENT
ASME RTP-1-1995 EDITION
I;,
FIG. NM2-4 VALUES OF V (Integral Flange Factors)
REINFORCED THERMOSET PLAmC
CORROSION RESISTANT EQUIPMEMT
ASME RTP-1- 1995 EDITION
1.5
/
-----3------1-1
h~ho'O-B12yr1 f c 1 .O; therefore, the minimum vaIue F = 1.0 shall be used
g1lQ0
g,1gD=1.96
FIG. NM2-5 VALUES OF f (Hub Stress Correction Factors)
REINFORCED THERMOSET PLASTIC CORROSION RESISTAMT EQUIPMENT
Dm+Lgnof F l a t - F e -rat
W
obripn E a r d i i Drtipnpeslrvrs
P
30
Pu
DrsW ternperawe
T
180
'F
Atnms. tsrnpwaiwe
T
70
'F
rrulcial
G a r marefid
Amwarn
S-r
--
0
C
-
- 2hG
Wm, r b
Nw-
H,
Ocrign
mv. Amr. lamp.
25.W
S,
25.000 ~ s i Wml
ud
-
A,
Ur
-
0.78&P
-
#I Hn
-
-
122.1 * 5
8.630
lb
h,
b
h.
-
72
-
-
-
8.777(1.259.375)
-
lit= W - H - 64.425
H c Hc r K,
-
130.775 + 8.777
S,
-
3.m
L o w hub IF, = fM lgT
3.000
Radibt Q-S*
-
S.
m
Sr = 3.000
=
- ho!
-
S.
0.5(5,
-
-
L
-
168.BMI
q in.
Sa*
k
6M.5 r 91zC rYd,l
-
thwLl in.*
in.
Mr=Hrhr-16.181
-h.-B
in
-
Atn
+
At?
-
231.62B
in.*
in.-B
#= Hth; = 15.702
Shaw h n m
-283wi
Srl
4n -
M.=HO&-2l5.W7
K - A d - 78.602
-
-
1.0902
C-ires
3 A 3 l ~ 7-1-88
-
ID
in.
2.39Bbci
0.51s-
b
8-WI125.a0O1= 185.200
u
gtlgp-1.&9.0.75=1.959
-
U-N.&
-
~r,~ a i= '1172110,7611' x a 7.348 2.71Soti
h*o
=
-
4617.348 = 0.612A
= 0.808
F
Radra! srtcrs at bon cirds
s,=3m
B
675Z
h;
-
Sc) or
Ib
63-388
FbykM-ts
1.875
Tang.Itg.S,-i~~f)-fS,Greater of
aa7sn
L
Ib
* 20.217
188.809 26.000
- A d s , -0.614.752
N,h ? , ~ f l
$,,-3,OML
-
Strus C a k a n r
S m n
m5-77
. . I
grsatsrol-or---
-A%= 0.2885 b,
Albwablc
S,
hj
=-.
0.7854l?4.51*1301 = 134.77S
l.fB35
L5p,
0.5fR * p,
,b
A-c
28.257
Me wUE'IP mcrrnsnt
-1
lam hrms
R
y
1.25 in.
AI-L~1':ih6m.~-16Ph10.1ZB~-&W
m-0.6
FbqeLwds
77
C-6
ZbrEimP = IP I1.251~174.61K1.6112Wt = 8.777
W-0.5%
Ha
- = -- -
- tZ1t125) = 74.5
77
H = 0.7BwG1P
S,
mi
he =
e +I&,= PI .251~1711511501 4 48.780
#G= H,ihdhbl
3.m psi
S,
mo-
Gash?%FaCIa:s Y-50
- -
hmg-HM6
Lwcr
C.S.11 W.87)
DeSign
W RW ~F K * b e a t s
y -8
-
221 ow
I= ID -
11 rnin.1
FAQ = 0.80817.348
#
d =fhbgi
M
b
-
0-1I0
12~-66r0.2#117.W81(0-75~'= 440
- ~ , n2 s i ~ m n -z =
w
d
3.220
n of n a u r M W r u n
,--(Eyz
* da 4
IR m.
-C=nim.
WB.
A=7&Si=
mwu
(dllhoLr
= 0.29 r Nl
-
Lr---. tr
43.2rn122rn1!*~
'r n * 1
-
T
FIG. NM2-6
I
1
9 d
-
[
=
1-43
(1-331i1.AS1~0.1101 + l
41.43lrn-llrn 1 B
.
l
in.
-
1.21
11 +dl'
---O6?1
a#)
DESIGN OF FLAT-FACE INTEGRAL BODY FLANGES WITH FULL-FACE GASKETS (Example Calculation 72 in. Flange at 30 psi)
-
TABLE MM2-3 BODY FLANGE DESIGN UStPlG FULL-FACE GASKETS MAXIMUM STRESS LESS THAN 3000 psi TYPE !I LAMINATES
-
b P m
5
P -C
I A
(LI
Nminel Flange Ohmeter
GENERAL NOTE: Flange daslgn based on the lollowlng criteria: P = allowable pressure, psi r = flange thlckness, In. g thickness of hub at end of taper {pipa tkn.). In. - Type II lam. prop, h = hublength, In. = 3 t m = gasket factor (assumed m = 0.5) Y = gesket unit seating load (assumed Y = 60 psi} Mexlmum flange and hub stress 3000 psi (based on use of mallwoven roving rttlnlorcement, Type Il laminarel Maximum bolt stress = 18,800 psl Maximum daslgn temperature = 180°F
-
-
ICI UI