This document was ed by and they confirmed that they have the permission to share it. If you are author or own the copyright of this book, please report to us by using this report form. Report r6l17
<* ( 0 . 6)3 p=coshp, q=sinhl, .-:. the equationof the tangentplanesat (ro,_yo,"o)can be written as ( x - x 0 ) c o s hp + ( y - y s ) s i n h 4- ( z - : . ) = Q
(0.61)
.,rr0..1,6,:0)be the vertex and QQ,y,z) be any point on the generator.Then, the direction . of the generatorare (x x6),(,r, ya),G-zo). Now, the directionratios of the axis of the l en g l eo f t h e c o n e : \ \ h i c hi s p a r a l l etlo x - a x i sa r e ( 1 , 0 , 0 ) ( s e eF i g .0 . 4 ) .L e t t h e s e m i - v e r t i c a - l. Then. 7r ,1
( r - x u ) l + { . }- ) u ) 0 + ( z - z u i 0
l
- ' t , 61 2 + 1 : - 2 , , 1 2 .J2 Jt .-*6t2 +(r
(.r rx )2 + (-t, y0)2+ (z
ziz = 2 (,t .ro)2
1 r r e ) 2- ( - r , - l o ) 2- ( z - z i 2 - o
(0.65)
24
IN'TRODUCTION TO PARTIAL DII.FERENTIAL EQUATIONS
Thus, we see that the Monge cone of the pDE (0.62) is given by Eq. (0.65). This is a right circular conewith semi-verticalangel 4 whoseaxis is the straightline ingthrough (..b, _yo,zo) and parallel to t-axis. l(.\,,.r,,.--r)
Fig,0.4 Monge cone. since an integral surfaceis touchedby a Monge cone along its generator,we must have a method to determinethe generatorof the Monge cone of the pDE (0.60) which is explained below: It nray be noted that the equationof the tangentplane to the integral surface z = z (x, ),) at the point (,re,1:e,;s)is given by \, p(x-xo)+q(y-yo)=k-z
.
(0.66)
Now, the given nonJinear PDE (0.60) can be recastedinto an equivalent fonn as q = q ( x o ,y o ,z o ,p )
(0 . 67 )
indicatingthat p and ? are not independentat (xo,yo,zo).At eachpoint of the surfaces, there exists a Monge cone which touches the surface along the generatorof the cone. The lines of between the tangent planes of the integral surface and the correspondingcones, that is the generatorsalong which the surfaceis touched,define a direction field on the surfaceS. These directions are called the characteristicdirections,also called Monge directions on S and lie along the generatorsof the Monge cone. The integral cunr'esof this field of directions on the intesral surface.l define a family of curves called characteristiccurves as shown in Fig. 0.5. The Monge cone can be obtained by eliminating p from the followins equations:
<----+---+--<---+--+--+-<----+---+--) Fig. 0.5 Characteristic directionson an integral. surface.
PARTIAL DIFFERENTIALEQUATIONSOF FIRST ORDER
p(x - xi + q@0,yo,zo,p) (y - yo)= Q - zo)
25 (0.68)
anl .1-
(r-x0)+()/-).,0):1=0. ap
(0.6e)
o-fservingthat 4 is a function of p and differentiatingEq. (0.60) with respectto p, we
-a.r4 , = -df; - + =dI<- -da = u . ap
dp
dq dp
(0.70)
\.-'\\i eliminating (dqldp) from Eqs. (0.69) and (0.70), we obtain dF dF (x - x6)
ap-A vyi=' r-rn
l-
'FpF
ln
(0.71)
'(l
the equationsdescribingthe Mongeconeare given by l*:.erefore, q = q(xo,Yo,zo,p), (x - xs)p+ (y - yslq = Q - zs) (0.72)
=l I--Xn
l-9n
'P
-q
l:: secondand third of Eqs. (0.72) define the generatorof the Monge cone. Solving them for :-ro)(y-jlo) and (z-zo), we get x-xn
l-Vn
z-z^
Fp
Fq
pFo + qFn
F :alfy, replacing (x- xo),Q - yi and (z - zs) by dx, dy and dz respectively,which corresponds r infinitesimal movement from (ro,ys,z6) along the generator,Eq. (0.73) becomes dx
dy
dz
Fp
Fq
pF, + qFo'
D:roting the ratios in Eq. (0.7a) by dt, we observethat the characteristiccurves on s can be c,::ained by solving the ordinary differential equations
4*= Fo{x, t, "@,y),p(x,y),q(x,y)}
(0.75)
26
TO PARTIALDIFFERENTIAL EQUATIONS INTRODUCTION
and "! = F"|x,y, z(x, y'),p(x, y),q(x.y)l.
(0.76)
at
Also, we note that dz dt
dv = -0z ; - -dx + ; - -dz = dv p dx _ + q aI- dx at dy aI at
Therefore, -d:= D t - + a f ^ dt
(0.7? )
curve,p is a functionof r, so that Along the characteristic dD dp dx 0p dv
a=;,a.6,a Now, using Eqs. (0.75) and (0.76),the aboveequationbecomes dp 0o 0F dt 0x 0p
--..-=-:-+3-_
dp dF dy dq
Since z,, =zyic or Py =q,, we have
-dD: = - -dD+ - dI1 dt 0x dp
Eq.(0.60);;^ differentiating Arso, ;Tec,;: :-+-:-P+ dx dz'
d0
dr
(0.78) I
dx dq
j"
)irr, = U ^ -:*-:dp dx dq dx
(0.79)
Using Eq. (0.79), Eq' (0.78) becomes = -\r\ + prz)
(0.80)
_:a=-(Fv+qF:)
( 0 . 8)1
: Similatly, we can show that AT
curves Thus,givenan integralsurface,we haveshownthat thereexistsa family of characterislic (0.81). (0'80) (0.76), (0'77)' and to Eqs.(0.75), alongwhichx, !, z, p and g vary according Collectingtheseresultstogether,we may write
27
PARTIAL DIFFERENTIAL EOUATIONS OF FIRST ORDER
F
dx dt dy (tt dz
-= dt
(0.82)
P t aD + q r o ,
==-(f,
+ pF,t and
AT
==-(F,+qF-). dl
equationsof the given PDE (0.60).The last three equationsare known as characteristic :.:: :'- ...:ronsof(0.82) are also calledcompatibilityconditions.Without knowing the solution z = z(x' y) c' r: PDE (0.60),it is possibleto find the functionsx(t),y(t),2(t), p(t),q(r) from Eqs. (0.82) and at eachpoint y(t),2 -- z(t) calledcharacteristics :--: rs. we can find the curvesr=r(t),/= ' = = the direction ol q q(t) determine p p(t) and that ,: - :haracteristic,we can find the numbers
p(X - x)+ q(Y- y)= (Z - z).
(0.83)
togetherwith the plane (0.83) refened to each of its points is called a T-, rharacteristics, c - : : ' : : i e r i s t i cs t r i p .T h e s o l u t i o nx = x ( / ) , / = y ( t ) , 2 = z ( t ) , p = p ( t ) , q = S Q ) o f t h e c h a r a c t e r i s t i c .:-,:::Jns (0.82) satisfythe strip condition
(084)
= * a,lL fi rr,t!, [ l. h [
F.
-.. b. notedthat not every set of ltve functionscan be interpretedas a strip. A strip should curve.Thatis' thel . rhatthe planeswith normals(P. q. -l) be tangentialto the charactertstic .rrisfy the strip condition (0.84) and the normals should vary continuouslyalong the curve. is statedin the following of the Cauchy'smethodof characteristic .r rmportantconsequence
--.
strip)of the PDE: F(.r..1. --.p. g) = 0. the function h= . r..- 0.3 AJongeverystrip (characteristic . .:. P'gl is constant l" strip, we have eroo| Along the characteristic I
0F dx . dF (b. aF (t: +rydp *dj ,tq
|
,,
|
; r t y ( ' ) , ) . ( r ) . 2 ( r ) . p ( r ) . q a \ r = ; ; + i i ** A -
t T
aoi-A,t,
becomes usingthe resultslistedin Eq. (0.82),the righrhandsideof the aboveequation
4Fp+F,Fq+F,(pFr+qFo)-Fo(F,+pF,)-Fo(Fr+qF,)=0. I '... tt'" function.F(x,y, z, p, 4) is constant of equations alongthe stripof the characteristic | -re (0.60). by Eq. defined F we considerthe followingexamples: . .: illusrration. |
I
INTRODUCTION TO PARTIALDIFFERENTIAL EQUATIONS
28
EXAMPLE 0,12 Find the characteristicsofthe equation pg = z and determinethe integralsurface which esthroughthe straightline x=l,z= y. Solution
If the initial data curve is given in parametricform as ,o(r) = I,
yo(s)= s,
z6(s)= s,
then ordinarily the solution is sought in parametricform as : = x(r, s),
y = y(t, s),
z = z(t, s).
Thus, using the given data, the differential equation becomes (l)
P6(s)q6(s)-s=0=r' and the strip condition gives I = pe(0)+ q6(l)
or
(2)
Qo= l.
Therefore, qo =1,
Po = r
(3)
(uniqueinitial striP)
Now, the characteristicequationsfor the given PDE are dxdydz^dDds
A=q'
A= e'
a=
zPq'
;= e' ;=q
(4)
On integration,we get p = cl exp (r), q = c2 exp (t), x = c2 exp (r) + ca I y=cl exp(t)+c4, z =2z exp(2t) + cs
(5)
'J
Now taking into the initial conditions x o = 1 , y o = J r z o= s , p o = s , q o = l
(6)
we can determinethe constantsof integration and obtain (since c2 = l, ct = 0) P = s e x P ( t ) ,4 = e x P ( t ) , x = e x P ( ).l f
/ = s e x p ( / ) ,z = s e x p ( Z t )
(7)
j
the requiredintegralsurfaceis obtainedfrom Eq. (7) as Consequently, .-^t-
EXAMPLE T.lJ Find the characteristicsofthe equation pq=z surfacewhich esthrough the parabolax=0, y'=2. Solution
and hence,determinethe integral
The initial data curve is
r o ( s )= 0 , / o ( s ) = s , z o ( s ) = s ' . Using this data, the given PDE becomes p o ( s )q o ( s )- s " = 0 = F
6)
PARTIAL DIFFERENTIALEQUATIONSOF FIRST ORDER
29
The strip condition gives
2s=ps(o)+qs(l)or
qs_2s=o
(2)
Therefore, t po = zolQo= ,212, = 2 pDE Now, the characteristicequations of the given are given by Qo= 2s
and
B\ '-,
= * r' * =,,*=roo, * =,,# =,
(4)
On integration,we obtain p=qexp(t), q = c2 exp(t), x =c2 exp(l)+c,
I
y=ctexpO+ca, z = c1c2 exp(2t)+ c5
J
. Takinginto the initial conditions
(5)
to =0, .Io=s, zO=s2,ps=s/2, qt=2s, u'e find h = s/2, cz =2s, ct = Qs, ca= 3l), gt =Q Therefore,we have
r =| exp1r;,q =2s exp(t), x = 2s[exp(r)- l], .y=
;texp
(r)+ tl
(6)
z = s2exp(2t) Elirninating.r and t from the last three equationsof (6), we get
167= (4y + x)2. This is the requiredintegralsurface. EYAMPLE 0.11 Find the characte stics of the PDE P 2+ q 2= 2 md determinethe inte$al surfacewhich esthroughx=0,2=y. Solution
The initial datacurveis ro(r)= 0, yo(s)=s,z6(s)=s.
Lsing this data,the given PDE becomes p'o+q6-2=0=F
(l)
INTRODUCTION TO PARTIAL DIFFERENTIAL EOUATIONS
and the strip conditiongives
1 = p o ( 0 ) + q e ( l )o r
qo-l=0
Hence, 8 o = l ' P o= l l Now, the characteristicequations for the given PDE are given by
=rr. * = ro'+zq2 =+l 4d r d=rr, r d r t4
!=0.41=o dtdtl
I
On integration,we get
'l
P=q, q=c), x=2ctl+ql
y = 2 c 2 t + c 4z, = 4 t + c s ) Takinginto the initial conditions x o = 0 ,l o = s , z o= r , p o = ! 1 , q o = 1 , we find D=Xl. o =1.x=!2t.)
I
Y=2t+s. z=4t+s. )
equationsof(6) are parametricequationsofthe desiredintegralsurface.Elimi The last-three s and r, we get the parameters z=y!x. . O.1O COMPATIBLE SYSTEMS OF FIRST ORDER EQUATIONS Two first order PDEs are said to be compatible,if they have a commonsolution.We shal derivethe necessaryand sufficientconditionsfor the two partial differentialequations f(x, Y, z, P, q) = s and g(x, y, z, p, q) = 0 to be compatible. Let
,-d(f,s\,n
(0.87)
d (p, q)
SinceEqs.(0.85)and(0.86)havecommonsolution,we cansolvethemandobtainexplicitexpressions for u and a in the form
P = OG,Y'z), q =t//(x,v, z)
( 0 . 88)
PARTIAL DIFFERENTIAL EQUATIONS OF FIRST ORDER
3l
andthen, the differential relation Pdx+qdY=77 or
Q@,y,2) dx+ ry\x, y, z) dy = dz
(0.89)
for whichthe necessary conditionis shouldbe integrable, - i . c u r l* = 0 vhereX =Id,V,-l). That is,
li
lo
i
dDy
v
il
dtdzl=s
rl
or
dGv,)+v(Q")= v, - Qy uhich can be rewrittenas
Vt,+0V"=Qy+V@,
(0.e0)
Eq. (0.85)with respectto x andz, we get )JoWdifferentiating
1*yofi*;nfr=o
t.r,ffi.r,ffi=o But,from Eq. (0.89),we have dp =dd
oq =dv and so on.
tt'",0"* .ii"t'li t'""Jt 'lJu'"'" ,.rutt.. these L:sins f*+ fp!,+ fqv/,=o ano .f"+fpf,+fqV,=0. \lultiplying the secondone ofthe abovepair by Q andaddingto the firsl one. we readilyobtain
(f, + 0f,) + f p@,+ 00,)+ .fq(V,+ 0v = 0 ") S i m i l a r l yf.r o m E q . ( 0 . 8 6 )w e c a n d e d u c et h a t
G, + ds,) + s p(Q,+ 00,)+ cc(V,+ Qv") = o
32
INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
Sotvingthe above pair of equations for (V,/x+ 0rl/z), we have
(V,+OV/,) I _ foG, + QE,) s r(f, + 0"f,) .fnqo go.f, OI
v, +Ov"= jUtot, - sof) +Q(fos"- sof)) ) ,gt = t.lo_\t.g+ 6 ' d_\l | t l d 1 x ,p ) A Q ,p ) )
1O.ot)
whereJ is definedin Eq. (0.87).Similarly,differentiating Eq. (0.85)with respectto y andz and usingEq. (0.88),we can showthat
=- ll a+4 *, al|.stl 6" ' * 16, r d\z,qt Ldty,q)
(0.e2)
)
thevaluesof Vt + QV, and(, +ry/, fromEqs.(0.91)and(0.92)intoEq.(0.90), Finally, substituting we obtain
atf.il *rd^tf .g)=_11!+.ra:l.etl d ( x .p \
d ( 2 .p )
d t t . S )) lA(y,S) In view of Eqs. (0.88),we can replace$ andy by p and q, respectivelyto get
a C ' s ) p d - ( 'fs ) + ' 0 ( 2 . p ) + a _ (. fs )* o d , t f. d _ o 0(t,p)
d(y,q)',
(0.93)
d(r,q)-"
This is the desiredcompatibility condition. For illustration, let us considerthe following examples: EXAMPLE 0./5
Show that the following PDES xp-yq=x
and ,2p+q=r"
are compatible and hence, find their solution. Solutioh
Suppose,we have
.f=xp-yq-x=0.
(l)
g=x2p+q-xz=0.
(2)
Then, A^
a\J,g) ltp-t) d(x, p) l(2xp- z)
x = pr2 12 -2x2p+ xz = xz - x2p- xz , ,2
a(f,s)_l o
x l__z
o \ 2 ,p t
x. I
a.
,-l
l-x
rl-'t
PARTIAL DIFFERENTIALEQUATIONSOF FIRST ORDER
-vl 'i=-o.
aU,e\ l-q-
=*=l
d\y,q) l0
ll
o
-vl
d(z,q) | -:r
I I
aj.il = | -:-:------|
33
t=-xv,
ard we find
a j , c ) . -pd- -(+f-,; !dJ +,qal zje,!d= ..,^+ d\x, p)
d\2, p)
d(y,q)
'
a(f,d
)
r"-r'p-12
d(z,q)
+ p x 2- q - q x y
=o_q_qry_r, =xz-q,x(qy+x) =o-q_x2p =0
Hence,the given PDEsare.compatible. Now, solvingEqs. (1) and (2) for p and g, we obtain P=q-l rqz+x x3+x2z x+x2y from which we get
p=x(1+ vz\ l+ r,z ,G$= u, and x2(z-x\
c=
x(z-x)
4r-;a9=r.,
ln order to get the solution of the given system,we have to integrate Eq. (0.89), that is . ( 1 +' u z' &\ .+ x ( z - x '\d v dz='
l+ry
l+ry
OT
v(z- x\ - x(z-x\ 1z- dk = !...:.........-:dx * j o, _: or dz-& _ydx+xdy z-x l+xy On integration,we get ln (z-I)
= ln (l + r1,)+ ln c.
Ihat is, z-x=c(l+xy)
(rl
EQUATIONS TO PARTIALDIFFERENTIAL INTRODUCTION
34
Hence, the solution of the given system is found to be (4)
z=x+c(\+xy), family. which is of one-parameter 0.11 CHARPIT'S METHOD
In this section,we will discussa generalmethodfor finding the completeintegralor complete solutionof a noirlinearPDE of first order of the form
(0.e4)
ar-.,--^\-n J\^.)'..,yattt-v,
This methodis known as Charpit'smethod.The basicidea in Charpit'srnethodis the introduction of anotherPDE of first order of the form
(0.95)
g(x'v'z,p,q)=o and then, solve Eqs. (0.94) and (0.95) for p and q and substitutein /7 = p(x, y, z, a)dx + q(x, y, z, a)dy.
(0.e6)
Now, the solution of Eq. (0.96) if it exists is the completeintegralof Eq. (0 94).
(0.95)whichis alreadydiscussed of the secondequation The maintaskis the determination of the form an equation is to seek what is required, Now, in the previoussection. g ( x ,v ' z ' p ' q ) = o with the givenequation compatible f ( x , y , z 'p ' q ) = o and sufficientconditionis for whichthe necessary
a \ f . g \ + , d t f , g ,* d U . g \* o d ( J , t , _ 0 . 'a(z.qJ 'dtz-p\-dly,q)
(0.q7)
d(*. p)
On expansion,we have
(af ds_aI ae\,"(atds-af as\ '\a.' dp apa= ) \ a * a p o p d x) '
.t44-4+).,(++-++)=, \dY dq
dq dY )
\dz
dq o: )
dq
which can be recast into
-u,*pf)n- (f, *nf,)#=o r,fr . t,fi *1rf n+o1:01ff
(0.e8)
(0.98) are This is a linear PDE, from which we can determineg. The auxiliary equationsof d\
dy
fp
fq _dq
dz
dp
rf, + q1'n -(f, + Pf,)
-U' + q1"1
(0.ee)
PARTIALDIFFERENTIAL EQUATIONS OF FIRSTORDER
35
-Ihese equationsare calledCharpit'sequations. Any integralof Eq. (0.99) involvingp or q or both :an be laken as the secondrelation(0.95).Then,the integrationof Eq. (0.96) givesthe complete :regralas desired.It may b6 notedthat all charpits.quutibn, neednor be ur.I, bu, it is enough :r choosethe simplestof them. This methodis illustratedthroughthe following examples: EXAMPLE 0.16 Find the complete integral of
6? a q2yy= qz Solution
Suppose
(r)
7=1p2+q2)y-qz=0
p'L+qj-1zr= o
:hen,we have
/*=u, Jr=p-+q" f^ =2pv.
J,=-s
f- =2av-2.
\ow, the charpitsauxiliary equationsare given by dx
fp
dy
fq
dz
dp
dq
Pfr+q1t, -(fr+ p7,1 -(fr+q1,7
I hat ls.
dx
dy
2py 2qy-t
2p2y+2qzy-qz
elp
dq l ( p 2* q 2 ) - q 2 l Pq
(2)
of Eq. (2), we have Fromthe lasttwo dP=dq Pq -p2 or PdP+qdq=g On integration,we get P2+q2 =4(constant)
( 3)
From Eqs. ( l). and (3), we obtain ay-qz=0
or
Q=q,/z
and
(1) (av "-\;
1 o t 2- a zy 2 1 t t z
36
INTRODUCTION TO PARTIALDIFFERENTIAL EQUATIONS
Substitutingthese values of p and q in dz= pdx + q dy, we get
-77 o,=Ja ax+zay OI r---i-_---:'--;
z dz- ay dy = I m' - o' y' & which can be rewritten as d 1*2 - a2y2 7tt2
. On int€gration,we find
or \x+ b)- = \z-/a) - y-
Hence,the completeintegralis .
.-t
)
1.
lx+b)- +y- = z'la.
EXAMPLE 0.17 Find the completeintegralof the PDE: ,2 = pq ry. Solution
In this example,given f =
"2
- pqxy.
(l)
Then,we have 'fx = - P4/'
fY = -PA*'
f" =22
fo=-eW' fq=-PxY' Now, the Charpit'sauxiliaryequationsbre given by
dt _dy = d" dp aq = = -(f, -(f, pf, q1:n + + pf") + q1'"1 fp fq That is, dx -qxy
dy - pxy
dz -2pqry
dp pqy-zpz
ds pqx -Zqz
From Eq. (2), it follows that dplp qy-22
dqlq px-22
dxlx -qy
dvlv -px
(2)
PARTIAL DIFFERENTIALEQUATIONSOF
FIRST ORDER
.irich can be rewritten as dplp - dqlq _-dxlx+dyty
qy-px dp
qy- px dq
dy
dx
Pq ft
integation, we find
-D X- = c(constant) qv p = cwlx Fmm the given PDE, we have ,2 = pqry=rq2y2 rtich gives q2 ="2/"y2 or q=zl^fcy=azly,
sherea = l/J7. Hence,
P = zlax' 9rbstitutingthesevaluesof p andq in dz= pdx+ q dy, get az=-dx+-d! axy
dz
l&,
dy
z
ax
y
I
lnz=:lnx+alny+lnb a'
z = brrroyo
is the complete integral of the given pDE. 0.18 Find the complete integral of ,2p2 +y2q2 -4=o Charpit's method.
37
EQUATIONS TO PARTIALDIFFERENTIAL INTRODUCTION
38
Solution
The Charpit's equationsfor the given PDE can be written as dx__
dy _
;7;- tii-
dz
_
dP
-2'P2 'a2P2+Y2q21(l)
--!c-
-2 yq'
Consideringthe first and last but one of Eq. (1), we have
-!+-1 2x'p
-Zxp'
or *x *42=o P
On integration,we gel ln (xp)=1Y1s or
xP=a
(2)
From the given PDE and using the result (2)' we get (3)
y 2q 2 = 4 _ o 2 (3) in Substitutingone set of p and q valuesfrom Eqs (2) and dz= pdr + q dy, we find that
dY .
4, = o& *.J;I xy
found to be On integration,the completeintegralof the given PDE is .=otnr*r[4Jhy*h. 0.11.1 Speciat Types of First Order Equations EquationsInvolving p and q only' That is, equationsof the tYPe
Type I
(0. I 00)
f(p, q) = 0. L e tz = a l + b y + c = 0
by f(.p'q)=o, 16gn i s a s o l u t i o no f t h e g i v e nP D E , d e s c r i b e d 1
t.
p=?=o.q=:.=b .1x
uf
we get Substitutingthesevaluesof p and q in the given PDE' f ( a . b )= 0
(0 l0lt
S o l v i n gf o r b . w e g e t ,6 = / ( d ) . s a y T h e n ' z--ax+A@).v+c
(0 l0lr
is the completeintegralof the given PDE
P A R T I A L D I F F E R E N T I A LE Q U A ] I O N S O F F I R S T O R D E R
39
E,\-IMPLE 0.19 Find a complete integral of the equation
"lp*"G=t Solution -: :he form
The given PDE is of the font f(p,q)=g.
Therefore,let us assumethe solution
z=ax+by+c ';:-:rg
"G+Jt'=t
or b=(r-J;)2
Hirce, the completeintegralis foundto be z = ax+ (1- nla)2 y+c. EX{MPLE 0.20 Find the completeintegralof the PDE Ps=l Solution Sincethe given PDE is of the torm f(p,q)=O, we assumethe solulionin the :t;:n z=ax+by-lc, whereab=l or b=lla- Hence,the completeintegralis I z=ax+-y+c.
I! Tlpe Il -,ar
Equations Not Involving the Independent Variables.
is, equations of the type
f ( 2 ,p , d = o
(o.lo3)
-ai a trial solution, let us assumethat z is a function of u = )c+ ay, where a is an arbitrary constant. z = f(u) = f(x + ay) dz
dz du
dx
du 0x
dz
dz 0u
'
(0.104)
dz du dz
t= sr= * ,=a ^
S-:stituting these values ofp and g in the given PDE, we get f
)-
,-\
Il".a.,+l=o au) \ au r::ch is an ordinary differential equation of first ordet Solving Eq. (0.105) for dz/du, we obtain ]=Qk,a) i:
\sav)
(o.ros)
PARTIAL DIFFERENTIAL EQUA-IIONS OF FiRST ORDER
39
EI{-I{PLE 0.19 Find a complete integral of the equation
Ji * Jq=t. Solulion : :--: form
The given PDE is of the form /(p, g) = g. Therefore, let us assumethe solution z=ar+by+c ,!a+.lb=l
or
b=\l-Jtt)t
l-l:::e. the complete integral is found to be z=ax+Q-Ji)2y+c. E.\${PLE
0.20 Find the complete integral of the pDE P q= t '
Solution Since tlie given PDE is of the form f(p,q)=O, we assumethe solution in the - : - , z = a r + W * c , w h e r ea b = 1 o r b = 1 1 a .H e n c e ,t h e c o m p l e t ei n t e g r a li s 1 z=ax+-y+c. a Tlpe II
EquationsNot Involving the IndependentVariables.
.l-:: is, equationsof the type
f(2, p,q)=o
(0.103)
:-. : rial solution, let us assumethat z is a function of u = x+ ay, where a is an arbitrary constant.
z=f(u)=f(x+ay) '
0z 0x
dz 0u du dx
(0.104)
dz du
o=+=++=,+ oy
du dy
du
S,::rituting thesevaluesofp and q in the given PDE, we get
f(,.+. du) \ a u "!)=o r::ch is an ordinary differential equation of first order. Solving Eq. (0.105) for dz/du, we obtain dz ^=QQ,a)
(sav)
dz ---:"-----a = au. QG,a)
(0.r 05)
EQUATIONS INTRODUCTION TO PARTIALDIFFEREN1IAL
40
On integration,we find
I t! '=u*"
J 9\2' a t
That is, F(z,a)=u+s=Ylaytt. which is the completeintegralof the given PDE. EXAMPLE 0.21 Find the completeintegral of P(1+q) = qz Solution
Let us assumethe solution in the form 7=f(u)=a+6y
Then, dz P=A'
q=a
dz du
thesevaluesin the given PDE, we get Substituting dz(.
dz\
dz
al'*oa)=o'd". That is, dz oar=*-'
dz or a-'-=4u
On integration,we find ln(az-l)=u+c=x+aY+c which is the requiredcompleteintegral. EXAMPLE 0.22 Find the completeintegal of the PDE: P 2" 2 + q z= 1 ' Sotation Let us assumelhat z = f(u)= x+ ay is a solutionof the given PDE.Then, dz dz c=a du du' given PDE,we obtain thesevaluesofp and g in the Substituting e=
ldzl
la")
llCEl =l '-1 +a-\du)
That is,
(*\ \du )
<,,*ort=r or
dzl du
tlr2 +o2
i
PARTIAL DIFFERENTIALEQUATIONSOF FIRST ORDER
4l
'[7*t a"=au ar lnte$ation, we get
r-i-----i zlz- +a-
t f r-------''l a- . I z+!z- +a-
2l
2
a
t=truv'rD
I
-:.;h is the requiredcompleteintegralof the given PDE. Equations Type lll Separable from those r.- eOuation in which z is absentand the containingx andp canbe separated equation. ::-::iningy and4 is calleda separable tYPe of the Tlat is, equations (0.r07) f(x, p)= F(v'q) : trial solution,let us assumethat f(x'P)=F(Y'q)=a (saY)
(0.108)
.. solvingthem for p and q, we obtain
p = 0 @ ) 'c = v 0 ) a"=* a"**ay= pdx+qdy dx
dy
dz=O@dx+v(;)dy integralin the form we ge1the complete r ::egration,
"=lO
The given PDE is of separabletype and can be rewritten as o 2( l + , 2 \ .--. .-=9=o x'y
(say),an arbitrary constant.
J-o*
e=;67'
q=aY
r:r rring these values of P and q in 42=pdx+qdf,
(0.10e)
42
INTRODUCTIONTO PARTIAL DIFIERENTIAL EQUATIONS
we get ' u=
{ot
Jl;7ar+aYry
On inlegation, we obtain
'=Ji[*t
*1y'*b
which is the completeintegralof the given PDE. EXAMPLE 0.21 Find the completeintegral of P2+q2='+Y Solution
The given PDE is of separabletype and can be rewritten as p2 -t= y-q2 =a (say)
Then,
P =J'+i,
q=Jy+a.
Now, substitutingthesevaluesofp and 4 in dz=p&+qdy we find dz=.lx + a dx+,JW
dy,
On integration,the complete integral is found to be 2 = :(x + a)"' + | (y + a)'', + b. 5J
Form Type Mlairaut's A first orderPDE is said to be of clairaut'sform if it can be written as z= px+W+f @,q) Charpit'sequationsare The corresponding
&dv dz fr y+.fq px+qy+pfr+q1fo "+ dp p-p
dq
The integration of the last two equationsof (0.lll) p=a,
(0.lll)
q-q gives us
q=b
Substitutingthese values ofp and q in the given PDE, we get the required complete integral in the form
z=ax+by+f(a,b)
(0.r l2)
PARTIAL DIFFERENTIALEQUATIONSOF NRST ORDER
E\-lrtPLE
43
0.25 Find the complete integral of the equation
,= p**qy*rlt*p\ t, Solation ThegivenPDEis in the Clairaut's form.Hence,its complete integralis t=**ry*r[*]
*F.
Find the complete integral of (p+q)(z-xp-yq)=I The given PDE can be rewritten as
I z=xp+yq+p+q :s in the Clairaut's form,
EXERCISES .
pDE Eliminatethe arbitraryfunctionin the followingandhenceobtainthe corresponding z=x+y+f(A). Form the PDE from the following by eliminating the constants z=(x2 + a)(y2+b). Find the integral surface (general solution) of the differential equarion
x"-d; -z+ y ' 7" d- =z $ + y ) 2 . ox oy Find the general integrals of the following linear pDEs: ,) yi) -P+xzq= ,i i )
( y + l ) p + ( x + 1 ) q= s .
Find the integral surface of the linear PDE xP-Yq=z ; h i c h c o n t a i n st h e c i r c l ex 2 + y 2 = 1 , 2 = 1 .
INTRODUC'TION TO PARTIAL DIFFERENTIAL EQUATIONS
6. Find the equation of the integral surface of the PDE 2y(z -3)p + (2x - z)q = y(2x - 3) whiclr containsthe circle x2 + y2 =2a, 2 =g. 7. Find the generalintegral of the PDE (x-y)p+(y-x-z)q=z which containsthe circle *2 + y2 =1, =1. " 8. Find the solution of the equation , = L1p2 + q21+ 1p _ x\ (q _ y) 2
which esthroughthe x-axis. 9. Find the characteristicsof the equation
pq=ry and determinethe integral surface which esthrough the curve z=x,y=0. 10. Determine the characteristicsof the equation pz -q2 "= and find the integral surface which esthrough the parabola4z+x2 =0, y=0. rll. Show that the PDEs and z(xp+ yq)=Zxy
xp= yq
are compatibleand hence find its solution. 12. Show that the equations p2 + q2 =!
arrd (p' + q')x = pz
are compatible and hence find its solution. 13. Find the complete integral of the equation (p2+q27x=pz where P=AzDx' q=0zl0Y. 14. Find the complete integrals of the equations ( i ) p x s- 4 q 3 x2+6x22-2=o (ri) 2(z+xP+Yq)=YP2. 1 5 . Find the complete integral of the equation p+q=pq. 1 6 . Find the complete integrals of the following equations: (l) zpq=p+q (lr) p2q2 + *t ut = *'qt (" + y').
45
EQUATIONS OF FIRST PARTIALDIFFERENTIAL
17. Find the complete integral of the PDE 2= px+ qy _sin(pq)
r 8 . Find the complete integralsof
the rollowing PDEs:
(\) tp3q2 + yp2q3+1p3+q3)-"p2q2 =o ( i 1 ) p q z = p 2 ( x q+ p 2 ) + q 2 ( y p + q 2 ) . 1 9 . Find the surface which intersectsthe surfaces of the system
z(x+Y1=s132a11 orthogonally and esthrough the circle x 2 + Y 2= 1 , 7 = 1 '
10. Find the complete integral of the equation 1 p 2+ q 2 1 x = p z
.0202 wherep=2, tl
(GATE-Maths, 1996)
Q=2,
Find the integralsurfaceof th€ linearPDE
s-D*-G-v+4!=, dy dx which containsz-1
and *2 +y2 =1.
(GATE-Maths,1999)
the correct answer in the following questions: Using the transformationu =Wly in the PDE xux = u + yu, the transformedequation has a solution of the form l/=
(A) f(x/y) (C) f (x - y)
(B) /(x + y) (D) .f (,y).
(cATE-Maths,l e97) ofthepartialdifferential equation,p3q2 + yp2q3+1p3+q31-tp2q2 =O integral Thecomplete ls z=
(A) ax+ by+ (ab-2+ baal (C) -ax + by + (bo-2- ob-z)
@) ax-by+(ab-2+ba)1 (D) ax+ by-(ab-2 +ba-2).
(GATE-Maths,1997) The partialdifferentialequationof the family of surfacesz=(x+ y)+ A(ry) is (B) xP-Yq=Y-Y (A) xp- yq=g (C) xp+yq=x+y
(D) xP+Yq=o. (GATE-Maths, 1998)
INTRODUCTION TOPANTIAL DIFFERETMAL EQUATIONS
Thecomplete integral of the ppt 7=psaqy-sin(pq) is (A) z=at+by+sin(ab) @) z=u.+by-sin(ab) (C) z=ar+y1sh16; (D) z=x+6y-sin(a).
I
I I I
II I
I II {
l
CHAPTER T
FUNDAMENTALCONCEPTS . INTBODUCTION !::. practicalproblemsin scienceand engineering,when formulatedmathematically,give rise to r--:l differential equations(often refened to as pDE). In order to understandthe physical _ -r'. iou' ofthe mathematical model,it is necessaryto havesomeknowledgeaboutthe mathematical .::;ter, properties,and the sorutionof the governingpDE. An equationwhich invorves several ::Tndent variables(usuallydenotedby x, y, z, r, ...), a dependenifunctiona ofthese variables, : -re partial derivatives of the dependentfunction a with respectto the independentvariables F ( x ,y , 2 , t , . . . , u , u y ,u z ,h , . . . , u r x , u r , . . . , u r , . . - )= 0
(l.l)
:.:.leda partialdifferentialequation.A few well-krown examDlesare: u, = k(uo +uw + urz) Iinear three-dimensional heatequation] u* +u,^+ . u - -= O '). u = c- (u$ + u)ry+ uzz)
[Laplaceequationin threedimensions] Iinear three-dimensional waveequation]
q+uur=puxr
[nonlinearone-dimensional Burgerequation].
:. theseexamples,z is the dependentfunction and the subscriptsdenote partial differentiation --: respectto these variables. inition l.l rhe order ofthe partialdifferentialequationis the order of the highest derivative -:ring in the equation. Thus the above examplesare partiar differentiar equations of second :::. whereas q=uurn+stnx :--.examplefor third order partial differential equation.
CLASSIFICATION OF SECONDORDEF PDE . nost generallinear secondorder pDE, with one dependentfunctronu on a domaine of - : X = ( \ , x 2 , . . . x, n )n. > l . i s nn s1 S ri1urixJ * b,'r' + F(u) = Q z.t L i ,i = t t=l
classification of a PDE dependsonly on the highestorderderivativespresent. 47
(1.2)
48
INTRODUCTION TO PARTIALDIFFERENTIAL EQUATIONS
The classificationof PDE is motivated by the classificationof the quadraticequation of the form Ax2 + Bxy+ Cy2 + Dx + Ey + F =0
(1.3)
which is elliptic, parabolic,or hlperbolic accordingas the discrimina Bz -4AC is negative. zero or positive. Thus, we have the following secondorder linear PDE in two variables;r and y': Auo + Bu,y + Curr + Dux + Eur + Fu = G
(1.4)
where the coefficientsA, B, C, ... may be functions of .r and y, however,for the sakeof simplicity we assumethem to be constants.Equation (1.4) is elliptic, parabolic or hyperbolic at a point (.x6,y6) according as the discriminant Bz(xo, y) - 4A(xo, ro ) C (;ro, rb ) is negative,zero or positive. If this is true at all points in a domain Q, then Eq. (1.4) is said to be elliptic, parabolic or hyperbolic in that domain. If the number of independentvariablesis two or three, a transformationcan always be found to reducethe given PDE to a canonicalform (also called normal form). In general,when the number of independentvariables is greaterthan 3, it is not always possible to find such a transformationexcept in certain special cases.The idea of reducing the given PDE to a canonical form is that the transformedequation assumesa simple form so that the subsequentanalysisof solving the equation is made easy. 1.3
CANONICAL FORMS
Considerthe most generaltransformationof the independentvariablesx andy of Eq. (1.4) to new variables 1,q, wherc (1.5) 5=1@,y), n=q@,y) such that the functions { and r7 arc continuously differentiable and the Jacobian
*o ' =#3=,;,',1= o*,-€,n,)
(16)
in the domain O where Eq. (l.a) holds. Using the chain rule of partial differentiation,the partial derivativesbecome ux = u|1x +uTna uy = ut'j +unn)
+2u4r€,4,+ rnrr\! + rg,to + urno u* = uE461. uo = ugl*4y + utT(4,ryy + 1yry")+urrn,n, + u|qn, +u44n ur, =u6gC,? +2u6r1yey +rrrrt r?+u,{r, +urr1r^
(17)
into the originaldifferentialequation(1.4), we get theseexpressions Substituting + Bu,Au"" + Cu-+ Du,9 + Eu+ Fu = G 't'I tI 99 S'l
(I 8)
FUNDAMENTAL CONCEPTS
49
- :te
2=A1l+Bt"t..+Ct? E =2A1,t1,+ B((,q, + (rr7) +2C(rr,,
e = 4l + nr7,r1, +Cr72,
E = Anxr + Bry,y+ Cnw + Dttx + Enr | =1,
(-'=U
(l.e)
-: nay be notedthat the transformedequation(1.8) hasthe sameform as that of the original (1.5). :::ation (1.4) underthe generaltransformation Sincethe classificationof Eq. (1.4) dependson the coefficientsA, B and C, we can also :: *rite the equationin the form Au* + Bu^.+Cu.^.= H (x. v.u.u-.u-.\
(l.l0)
(1.5),Eq. (1.10)takesone of the following -: canbe showneasilythat underthe transformation '-l:eecanonicalforms: (i) ulq-ur,=0(6,ry,u,%,ua) (l.lla) :: uq=Q,(6,n,u,uq,ao)in the hyperbolic case (ii) ury+urr=0(6,4,u,ue,ua) in theellipticcase u$ =tg,n,u,u€,u?) (iit
(l.llb) (l.llc)
:l
uaa= Q(6'n,u'u1,zo) in the parabolic case *e shalldiscussin detail eachof thesecasesseparately. UsingEq. (1.9) it can also be verifiedthat
_ tr4)2 {a, _ +,1c1 Ez_ qlc = G,?ry -d thereforewe concludethat the transformation of the independent variablesdoesnot modify r-e type of PDE. 1.3.1 Canonical Form for Hyperbolic Equation E2-qAe>0 for hyperbolic :;ncethe discriminanr case,we set 7=0 andf=0 in Eq. (1.9). ;hich will give us the coordinates and that reduce the given PDE to a canonicalform in € ry '*hich the coefficientsof u$,u44 €re zero.Thus we have ,4= A4', + B€,6y+ c6; =o
e = .tql +Bq,q,+cryj=o
50
INTRODUCTION TO PARTIALDIFFERENTIAL EQUAT]ONS
which, on rewriting, become
(r
al!l
(r\
\2
\qv)
+nli l+c=o \{r i
=o ,fr'l'.uiz,l.. \tty )
Solvingtheseequationsfor
\ay )
GJ11,)and(n'/ny)'we get r-..-
4x_-B+,1B" -4AC ,
at
F--;-
r y ,_ - B - l B ' - 4 A C 2A 4y
(r.12)
The conditionB' >4AC implies that the slopesof the curves( (x, y) = C1,r\Q, y) = Cz are real. Thus, if B' > 4AC, then at any point (x, _y),there existstwo real directions given by the two roots (1.12) along which the PDE (1.4) reducesto the canonicalform. Theseare called characterislic equations.Though there are two solutionsfor each quadratic,we have consideredonly one solutionfor each. Otherwisewe will end up with the sametwo coordinates. A f o n g t h e c u r v e( ( x , y ) = c r , w e h a v e d( =(,dx+(rdy=0 Hence.
4=-lL1 dx
(r.r3)
\1, )
Similarfy, afong the atwe q(x, y) = c2, we have
4=-lul dx
(l.l4)
\,tn )
Eqs.(1.13)and (1.14),we obtainthe equationsof family of characteristics Integrating €(r, y)=ct a n d r y Q , y ) = c 2 , w h i c h a r e c a l l e d t h e c h a r a c t e r i s t i cosf t h e P D E ( 1 . 4 ) . N o w t o o b t a i n t h e canonicaiform for the given PDE, we substitutethe expressions of{ and ? into Eq. (1.8) which r e d u c e st o E q . ( l . l I a ) . To make the ideas clearer, let us considerthe following example: 3 u * + l ] u - . + 3 t . - .= 0 Comparing with the standard PDE (1.4), we haveA =3, B =10, C =3, 82 - 4AC = 64 > 0. Hence the given equationis a hyperboliDE. The correspondingcharacteristicsare:
dy (c,\ dx
\6r)
(-a*,[F-+rc)
1
2n
3
\
)
,,NDAMENTALcoNcEprs
|
I | | -: |
|
+=-(u)=-(-a-'l-'a-qAc)-. * 24
\4') \ )tina ( andry, we first solve for 7 by integratingthe aboveequations.Thus,we get
I
,=!'*',
,=Y-3x.
cr=y-x/3
:-crore'
|
|
'=3x+c1' :h give the constantsas
J
|
sl
F €==vy- 1- .3- -x = c 1 ,
I
n=t-!,=c,
- -::e
are.thecharacterislic linesfor thegivenhyperbolicequation.ln thisexample,the characteristics to be strarghtlines in the (x, y)-plane along which the inirial data, impulseswill ,,=,'r#
|
To find rhe canonicalequation,we substitute the expressions for
J
f and 7 into Eq. ( I .9) to get
,=.e(|+Bl(r+cqj=t1_t12+10(_3)(r)+3=0 |
I = ZAi,ry,+ Bli,Uy+ qyry,t +2c6rny
I
I
=,(3,er(-;).,ofr-:xrr.r(-J)]+z(:)(r)(r)
II
=o=ro(_fJ+e =,,_+=_+
I
|
.=o
I
D=0. E=0. F=o
:e. therequired canonical lormis
lF: ' f-
| f |
*"'=o
or '':n=o
:rlegmtion, we obtain
,G.n\="fc)+ sot)
---:/and g arearbitrary. Goingbackto the originalvariabres, the generar sorutionis ,(x,y)=f(y_3x)+s(y_xt3)
3.2 Canonical Form for parabotic Equation ":eparabof ic equation. rhedisciiminant E2-q,qe=0, whichcanbetrueif B=0 andi or C f :j.rat to zero.Suppose we set first l=0 in Eq. (1.9).Thenwe obrain F ,=A{}+B(,(,+cs,,=0 f
|
I
INTRODUCTIONTO PARTIAL DIFFERENTIALEQUATIONS
or (r\ (r\2 Al:z | +Bl::r l+C=0
11,)
\6, )
which gives t;=
-B!,1 r--;B' - 4AC ,,
"y
Using the condition for parabolic case, we get 9r
(1.15)
{,=- 2A Eq.(1.15),we set Hence,to find the function6=1Q,y) whichsatisfies ),,rp
A=-7.= rA andget the implicit solution
6Q,v)=ct In fact,one can that 7=O impliesB=0 as follows: + B(6,tly + 6ynx\ + 2C1yry' B = 2AS,t7, to Since82 -4AC=0, the aboverelationreduces
+ qyq,)+2cEyn, B =2A€r4,+2.[ 'tc 1q,r7,
= 26fAq,+ Je 6; (-.aq,+J- ryn1 Howevel
q, = - B = - z . ! A C= 2A 4y 2A Hence,
-.,F.t6"11J-.t E= z1J-e6 t, +Jcrl)=s Wethereforechoosef in sucha way that both 7 andE arezero.Then 17can be chosenin any way we like as long as it is not parallelto the f- coordinale.ln otherwords,we chooser7 such is not zero.Thuswe canwrite the canonicalequationfor that the Jacobianof the transformation to eitherofthe forms parabolic caseby simplysubstituting { and7 intoEq.(1.8)whichreduces (l.llc). we consider the followingexample: the procedure, To illustrate x2uo -2ryu,
+ y2uo = er
The discriminant82 - 4AC = 4x2y2 - 4x2y2 =g, andhencethe givenPDE is paraboliceverywhere. The characteristicequation is
53
FUNDAMENTAL CONCEPTS
dvt-B2xvv dx -
-----L
2A
€t
=
-
!-
x
2x2
we have .-.:eSTation, xl=c : :.ence ( = xy will satisfy the characteristic equation and we can choose 17= y. To find the
forf :::cal equation,we substitutethe expressions
and ? into Eq. (1.9) to get
A = A y z + B x y + c x 2= t 2 y ' - 2 t 2 y 2 + y 2 x 2 = 0
r=0, E=0,
e=y2, F=0,
D = -2xy G=e"
-:.. the transformedequationis lTur, - LxyuE= e' 42unt=26uq+e1n : :rronicalform is, therefore, 21 | ur, = -7 u1+1e, r,"' i 3 Canonical Form for Elliptic Equation -:. :he discriminant 82-4AC<0, for ellipticcase,the characteristic equations
dx
dy_B+lB"-4AC dx
24
--. complex conjugatecoordinates,say { and ri. Now, we make anothertransformationfrom - :o (d, p) so that
o=€+n. s=€-n 22i
:- give us the requiredcanonicalequationin the form (l.llb). -: ;llustratethe procedure,we considerthe following example:
: rriminantBz- 4AC= -4x2.,.
o e iptic.Thecharacreristic equations
"#J;",iiu"r,oro, dy= Bdx
-'[47 2
= -tX
54
INTRODUCTION TO PARTIALDIFFERENTIAL EQUATIONS
Integrationof these equationsyields
iy+l=s,,
-ir+L=""
t' = 2!2x'2 + i v .
,=!12 -iu
)"4
Hence, we may assumethat
the secondtransformation Now,introducing F+n
F-n
a=-,p=-; we obtain 12
a=;,
F=v
The canonicalform can now be obtainedby computing ]=Aal+fa,ay+caj=y2 E =2Aa,f ,+ B(a*F, + arfr) +Zc(arg) = 0 e=eB| +BB,BI+2r=x2 D = Aao + Bary + cayy+ Ddx + Eat = | E = A9* + BBxy+ cByy+ DB, + EBn = 0
F=0,
c=o
Thusthe requiredcanonicalequationis ,2uoo+ ,2uOO+uo =O or
uoo+upp=-fi EXAMPLE1,1 Classifyandreducethe relation y2uo - Zxyu, * *' uo = t u, * t u, xy
to a canonicalform and solveit. Solution
The discriminantof the given PDE is 82 -4AC =4x2yz-4x2y2=g
FUNDAMENTALCONCEPTS
55
rhe given equation is ofa parabolic type. The characteristicequation is
-:-:3
d y_ _ 1 , _ B _ - 2 r y _ _ x dx 1r 2A Zy2 y L- .::ation givesx2 +y2 =cr. Therefore, equation.The €=12 +y2 satisfiesthe characteristic -- : :.rrdinatecanbe chosenarbitrarilysothat it is not parallelto {, i.e. the Jacobianof the transi. -::ion is not zero.Thus we choose 6=12 +y2, : ::d the canonicalequation,we compute
--
,'2
-Bx2y2 7 = ,lEl + nqg, + G1l,=a*2y2 =0 + 4x2y2 e =4r2y2,
B=0, F:-::.
D = E = F= G = o
the requiredcanonicalequationis
=O orunn=0 4x2Yzur, ::.re this equation,we integrateit twice with respectto ry to get
ur=fG),
u=f(€)rt+sG)
^:-:
.fG) and SG) are arbitraryfunctionsoff. Now, going back to the original independenr i:::-es. the requiredsolutionis u = y 2f ( x 2 + y 2 1 +g l * 2 + y 2 1 ,-tltPLE 1.2 Reduce the following equationto a canonical form: ( l + x 2 1 u o + ( + y 2 \ u y y+ x u x+ y u y = 0 :,tlution
The discriminant of the given PDE is
82 _ 4AC= _4(1+r211t+y21
G4o+?nrt5 ' ! E;V
Bdx
-
2(l+ x2)
dy
B+ J Br:4AC
dx
2A
-::gration,we get
6 = ln (t+.,[2 + t.y-i tn1y+n[2 + t t =.,
n = tn(, * JP * D+i tn1y+,[1]i1 = g, second transformation F +n
a =2__:J.
22i
n-f
B=''
'
t+r2
56
INTRODUCTIONTO PARTIAL DIFFERENTIALEQUATIONS
we obtain
o=tn(r*Jr'*t) P = t n 1 y + , [ 1+] t ) Thenthe canonicalform can be obtainedby computing f = ^ l a ? + B a , a y + C a 2 r = 1 ,E = 0 ,
C=1, D=E=F=G=O
Thusthe canonicalequationfor the given PDE is udd+upg=0 EruMPLE 1.J Reducethe following equationto a canonicalform and hencesolveit: uo-2sinxu*-cos2 rrr - cos:ay=0 Solution
Computingwith the generalsecondorderPDE (1.4), we have A=1,
B=-2sinx, C=-cos2x,
D=0,
t=-cosr,
F=0,
G=0
= + (sin2x + cos2r) = 4 > 3. Hencethe given pDE is hyperbolic.The The discriminate82 - 4.,q,C characteristic relevant eouationsare dy= B-JF -qAC =-sinr-l dx 2A d y _ B+J* -+rc =l-sinx dx ZA On integation, we get y = cosr -.r+ cl,
y = cosx+ x + c2
Thus,we choosethe characteristic lines as I = x + y - c o sx = q ,
r y - - - x +y - c o sx = c 2
In orderto find the canonicalequation,we compute
2 = A l l +M " e . , + c { = 3o E = 2A1,ry. + B(6,11 y +I yn) +2cqyq y = 2 ( s i nr + l ) ( s i nx - 1 ) - 4 s i n 2x - 2 c o s r2 = - 4 C =0,
D =0,
I'-n
Thus,the requiredcanonicalequationis ur- =0
F =O
G=0
FUNDAMENTALCONCEPTS
:::!raling with respect to 6, we obtain
un= f(ry) ...3re / is arbitrary.Integrating once again with respect to ?, we have
u = f@) dtl+ cG) J u=V(rt)+cG) to the old variables e(6)is anotherarbitraryfunction.Retuming r, lr, the solutionof the
PDEis
u(x, y) = ry(y - x -cos x)+ g(y +x - cosx)
E\4.\IPLE 1.r' Reducethe Tricomi equation uft+xuyy=0, '"
x*0
z.i x, y to canonicalform.
The discriminant82 - 4AC = -4x. Hencethe givenpDE is of mixed type:hyperbolic solution ' - . < 0 a n d e l l i p t i cf o r x > 0 . ,_-: I
ln the half-planex<0, the characteristic equationsare
dv dx
nn-.
t*'[F -+,qc 2A
, =? g*yr/2+ r, , = -? 943/2+
"2
)re, the new coordinatesare
((x,fi=1y-1fi'f =,, 2
4 { x , y ) = } y + 1 . 1 - a 1=3g , zarecubiarabolas. orderto find the canonicalequation,we compute I = l t ? + "B5 .rxF5 ) / +. "c5F1 1 = - 9 r * g *, .24 ^r = g 4..
E=9x,
e =0,
p=-1g4)t2 =-E,
F-C-n
INTRODUCTIONTO PARTIAL D1FFERENTIALEOUATIONS
5E
Thus,the requiredcanonicalequationis -2(-t\-tt2u, +1Gx\-tt2 u- =o 9ru,' e't t 4'
4
OI
I uh=-luq-ua) Case II
ln the half-plane x > 0, the charactedsticequationsare given by
dv .-
dv
7 =iJx. ctx
a =-iJi ctx
On integration,we have
((x. y)= | y - itJx)", 2'
4(x.y) = | y + i(Jx\' Z'
the secondtransformation Introducing t+n d=i.
p^= -t ;- n
we obtain 3
o=ry,
p^ = - 6. tt-.1 xr
normalor canonicalform is The corresponding 1 ^ =U uooluBB+----':up of the equation EXAMPLE 1.5 Find the characteristics uxr+ 2ury+ sinz1x1uo+ u, = 0 when it is of hyperbolictype. Solution The discriminant82 - 4AC= 4 - 4 sin2x = 4 cos2x. Hencefor alI x*(2n-l)212, equationsare the given PDE is of hyperbolictype. The characteristic dy
&
B+JF -qAC= l + c o s . r
On integration, we get /=.r-sinrfcl,
y=x+sinx+c2
Thus, the characteristicequations are E=y-x+sinx,
ry=y-x-sinx
EXAMPLE 1.6 Reduce the following equationto a canonical form and hence solve it:
yut + (x+ y)ury+ xuw = 0
FUNDAMENTAI-CONCEPTS
Solution
59
Thediscriminant 8 2 - 4 A C = ( x + y 1 2 - 4 r y = ( x _ y ) 2> 0
-:-:e the given PDE is hyperboliceverywhereexceptalong the line y:x; = r. it is parabolic.When y*x, the characteristic equationsare /--;dy _B+rlB. _4AC _(x+y\+(x_y) dx 2A 2y dy dx
whereason the line
4=t dty
,- - rregration,we obtain
y=x+q,
y2 =x2 +cz
the characteristic equationsare
1=v-x,
tt=y2 -x2
straight lines and rectangular hyperbolas. The canonical form can be obtained by
7=,tg]+n4qn+C(l=y-x-y+x=0, c=0.
D=0,
E=2(x-y\
E=_z(,_y)2,
F=C=o
canonical equation for the given PDE is
-2(x - y)2ug + 2(x - y1u, = 0
-t2uh + 2 ( - O u , = 0 d I -dul
-
6u€4+ un= ; l E l = u " ) 05\ on ::::ion yields
E*=r
u=EJ fttt\dry+c,Gl
It
u=-.1 i:neral solution.
f (y'-x")dty' -x')+g1y-x)
INTRODUCTION TO PARTIALD]FFERENTIAL EQUATIONS
60
EXAMPLE 1.7 Classiff and transform the following equation to a canonical form: sin2(x)rio + sin(2x)u, I cos2 (x1u .=x o Solution
The discriminant of the given pDE is 82 - 4AC = sin22x - 4 sin2x cos2r = o
Hence, the given equation is of parabolic type. The characteristicequation is dvB
c o tx
4t=;= Integation gives
)r=lnsinx+ct Hence, the characteristicequationsare: 6=/-lnsinn,
ry=y
4 is chosenin such a way that the Jacobianof the transformationis nonzero.Now the canonical form can be obtained by computing
a =0, F=0,
A=0, E=0.
f =
D =t,
r, "or2
Hence.the canonicalequationis
cos2(x) ur, + u, = x -- sin-tpn-|1- u, 1l- e2(n-1t1uro EXAMPLE 1.8 Show that the eouation
uo+ryu,=Lu,, xa'
where 1y'and a are constants,is hyperbolic and obtain its canonical form. Solution Comparingwith the generalPDE (1.4) and replacingyby /, we have A=1, B=0, C = - 1 / a ' , D = 2 N l x , a n d E = F = G = 0 . T h ed i s c r i m i n a 8n 2t - 4 A C = 4 1 a 2 > , J .H e n c et.h es i v e n PDE is hyperbolic.The characteristicequationsare dt
Pr
82 - 4AC
,,14/a'
dx
2
Therefore, dtl
dtl
dxa
[aa
On integation, we get
t=-!+cr, aa'
t=!+c.
= + ICI
oPERAroRs 1.4 ADJorNr tu=' givenor where r is a differential operator
I
(t'16)
I
t= aolxylL+ ar<'){\ +...+o,{') |
One way of introducingthe adt differentialoperatorZ* associatedwith I is to form the I productvZu and integrateit over the intervalof interest.Let I
Itn"uarlfn+lB rt*uar
(1.11 |
rvhichis obtainedafterrepeatedintegrationby parts.Here,Z* is the operatoradtto t, where I the functionsu and y arecompletelyarbitraryexceptlhat Lu and.ttv shouldexist. I EXAMPLE 1.10 Let Lu = a(x) (d2uldx2-S + n14g"ldr'1+c(.r)r/;constructits adt Z+. I Solution Considerthe equation I
t'**= :,':..*),',,1, -t.,',:!:;'*,.' ^,,. I = (av)---=ax+ @v) Gv)u dx Jn Io *dxJ n
FUNDAMENTAL CONCEPTS
:: -1,\ ever, rB
r!2"
?8
S
| 1av)Td;r=J|A to")|tu'\a* JA dX-
dX
- {ou)'u'a, =1u'val,^ l" =[u'av]l-tu(av)'ll +
tu
u@v)"dx
-[uubi'a* I'ooffa.=tu(bv)li
lB
vtu dx=7u'(av)- u(av)'+ u (bv)lBn + ul(av)"- (bv)'+ (cv))dx JB
equationwith Eq. (1.17), we get 1 * y = (av)" - (bv)' + (cv) = 6y" a 12o'- b) v, + (a,, - b, + c) v
-b)!+{a" -b'+c) dx
(l . 1 8 ) functions of x and y. In
:::scribed over the
L(u) =
s
,a-J
(l.le)
TNTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
64
Its adt operator is defined by
r-(u)=). j. ,n,rr-f.!@,u)*"u dx'ox dxi ij=1
t
(r.zo)
E
Here it is assumedthat A4 eCQ) and B, ec(l). For any pair of functionsu,reCQ\, it can be shown that -r
tf,
|
,'-
.
\
,
/
-rr \l
vL(u\-uL*(v\=\*lI r,l,?-,+1.*lt,-2?ll '\ dx, dx, dxi) ar, ,:
\
l-tr
i
11
(r.2r \"-'l
This is known as Lagrange'sidentity. EXAMPLE 1.11 Construct an adt to the Laplace operator given by L(u)=\$+uD
(1.22)
Solution ComparingEq. (1.22)with the generallinearPDE (1.19),we have All=l,lrr=1. From Eq. (1.20),the adt of (1.22) is given by
L+O)=+O)+{{i=uo dx-
dy-
*,""
Therefore, L*(u)=uo+u, Hence, the Laplace operator is a self-adt operator. EXAMPLE 1.12 Find the adt of the differential operator L(u)=uo-rt
'/l t1\
Solution ComparingEq. (1.23)with the generalsecondorder PDE (1.19),we have 4r =1, Br =-1. From Eq. (1.20), the adt of (1.23) is given by
L*O)=4;0\-4Cn)=u**, dx'
oI
Therefore, L* (u) = uo t, Y, It may be noted that the diffusion operator is not a self-adt operator. 1.5
R I E M A N N ' SM E T H O D
In Section 1.2, we have noted with interest that a linear second order PDE
L(u)= 61'' 11 is classifiedas hlperbolic if 82 > 4AC, and it has two families of real characteristiccurves in the xy-plane whose equationsare
FUNDAMENTAL CONCEPTS
1=fi@,y)=ct,
4=fz@,y)=cz
:re' (|'TD are the natural coordinates for the hyperboric system. In the -r,r'-prane,the curves
of the givenpDe as showni"'nig. i.ifa
:;:),::i:\:1:::!)i"^r:,::!","haracteristics le in the the curves
6?-plane, 6=ct and e=cz are furn'ili". oi.truight lines parallelto the ; as shown in Fig. l.l(b). A linearsecondorder partial differentialequationin two variables, onceclassifiedas a hyperboric rrion, can always be reduced to the canonical form 2'2, /1 z, z-,
d+ dy
1L )
consideran eguationwhich is alteadyreducedfo its canonicd form in te vaiab)es d-u du . du L(u) = + a- + b-; + cu = F(x. y) ox oy ox oy
(1.24)
r Z is a linear differential operator and a, b, c, F are functions of r and y only and are rntiable in some domain IR.
(a)
(b) lines. Fig. 1.1 Familiesof characteristic
Let us d v(x, y) be an arbitraryfunctionhavingcontinuoussecondorderpartialderivatives. ler the adt operatorZ* of Z definedby )2,,
)
)
Z * (v) = -:-:- - -:- (av)- + (bv)+ cv ox oy ox oy
(t.2s)
u = o * - u- 4 , N = b u v + v f u dx ov'
(1.26)
we introduce
66
INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS
then M, + N, = ur(ov) + u(av), - urv, - w, + u r(bv) + u(bv), + vru, + vu,
Addingand subtractingcuv, we get T -)
'l
r -1'r
l -l-'"- ! wr-levy+ cvl*ul!.^ *od-u *o. d-u *rul u,+N,=-,1 ' ox dy dx dy Loxoy
)
ldxdy
l
l e.
yLu_uL*v=MtrNy
(1.:-'
This is known as Lagrange identity which will be used in the subsequentdiscussion.The operarr Z is a self-adtif and only if L=L*. Now we shall attemptto solve Cauchy'sproblemwhici is describedas follows: Let
L@)=16,r',
(1.18r
with the condition (Cauchy data) (i) u= f(x) on f, a curve in the xy-plane; ),,
(ii) :: = s(x) on r.
on This is a, and its normal derivativesare prescribedon a curve I which is not a characteristiclina Let f be a smoothinitial curvewhich is alsocontinuousas shownin Fig. 1.2.SinceEq. (1.ltl is in canonical form, .r and y are the characteristiccoordinates.We also assumethat the tanget to f is nowhere parallel to the coordinate axes.
P(1,tt)
Flg. 1.2 Cauchy data. LeI P(6,D be a point at which the solution to the Cauchy problem is sought. Let us drar the characteristicsPQ and PR through P to meet the curve f at Q and R. We assumethat r u,, uy ate prescribedalong f. Let ?lR be a closed contour PpRP bounding lR. Since Eq. (l.ltr is already in canbnical form, the characteristicsare lines parallel to x and y axes. Using Greel': theorem, we have ff
f
- (Mdy-Ndx) l l ( M , + N , ) d x d" y = Q Jl'R'
JJ R
FUNDAMENTALCONCEPTS
dlR is the boundaryof lR. Applying this theoremto the surface integral ofEq. (1.27), we
[ ^_q ay-Na,1=![tu4o)-ut*{D]a,at
J'R
(1.30)
o.
other words,
< * o r - r u a ' y *J[a ' ( M d y - N d x )J+r lo 'r v a' r - N ,-/' "' ) =JfJ[ p L @ ) - u L * ( v ) ) d x t r y
J| r '
using the fact that dy=o on PQ and rk=o
on PR, we have
- (v)]dx dy ' ' .[-^ Jl_1u r ' ay-Na'1+l J R.u p ay1p el,'a"=[[ , i i 1"21u)-uL+ ..,
(1 . 3 1 )
Eq. (1.26), we find that
*'d* Irn'*=1nu"a*+[o by parts the second term on the right-hand side and grouping, the above equation
l,n
u a, =[uv)an + u@v- v,1dx la
this result into Eq. (1.31), we obtain
luvl, = luvlg+ J, u (bv- v,) dx-J
-
u
u@v- vr) dl
_ at [ , w ar u a4*l! lu4u) ,L*{u)]a,
(1.32)
IR
.u,*choosev(x,y:6,q)
to be a solution of the adt equation
g t* 1,1=
?
(1 . 3 3 )
r de same time satisfy the following conditions: vt=bv yy = av v=l
w h e ny = q , i . e . , o n P Q when "r = 4, i.e., on PR w h e nr = 6 ,
y=q
( 1.34a) (1.34b) ( 1.3ac)
rzi rhis function v(x,y;€,D as the Riemannfunction ot the Riemann-Greenfunction. Since = F - E q . ( 1 . 3 2 )r e d u c e st o
lulp = luv)e- [, [u(av- vr) trt,- v(bu+ u-) dl + eF)ttxdy [I
(1 . 3 5 )
= :alled the Riemann-Greensolution for the Cauchy problem describedby Eq. (1.28) when ;r- are prescribedon l. Equalion (1.35) can also be written as
68
INTRoDUCTI0N To PARTIAL DIFFERENTIAL EQUAI.IONS
I f rr l u l p = l u v -l o _ l - u v \ a d y _ b d x ) + | ( u v , d y_ v u , d x )+ l l ( v F ) d xr t v .tf Jr Jd
{1.361
This relation gives us the value of z at a point p when u and u, arc prescribedon f. But when u and u, are prescribed on f, we obtain t t , rr d y - b d x ) - J r ( / v r d x + w ) . d y ) + ( v F ) d xd y lulp=LuvlRJruv\d JJ
(t.17)
JR
By addingEqs. (1.36) and (1.37),the value of u at p is given by l.
-
f
lr
l u l , = - { l u v l " + [ a v l p l -l _ u v ( sd y - b d r ) - ^ l u e , d r - v , , d y ) rr 2 2Jr " I f
+ - l v ( u^ , d r - u u d y \ r+r l 1l v f 1 daxy "'d 2Jr
(t.i8)
Tlrus, we can see that the solution to the Cauchy problem at a pornt (q,q) dependsonly on the cauchy data on f. The knowledge of the Riemann-Greenfunction therefore enablesus to solve Eq. (1.28) with the Cauchy data prescribed on a noncharacteristiccurve_ EXAMPLE 1.1J Obtain the Riemann solution for the equation -) - *-"' dxdY grven (t) u=f(x) ),, (u) - = g(x) otx
onf on I
where f is the curve y=x. Solution
Here, the given PDE is ^t
L@) = -:--L. = r1x. y1 ox oy
(t.3e)
We construct the adt La of L as follows: setting M = quv-uyy,
N =buv+vu,
and comparingthe given equation(1.39) with the standardcanonicalform of hyperbolic equation ( I .24.1,we have a=b=c=0 Therefore, M =-uvy,
N =yux
(1.40)
FUNDAMENTAL CONCEPTS
69
1-:
M x + Ny = vury- ur) = vl(u) - uLi (v) ry ^7
l*(v)=__:__: dx dy
(1.41)
F:::. Z = Z* and is a self-adt operator.Using Green's theorem
dt= | ._w ay- u a,; ll w,+ N,)d, ' dt<
"fi
"
r:1ave tf = ll lvL(u) uL*tv)ldidy Ja{v ay u a')
IR'
fl 'ril
Ur -,1. rila*ay=rdt< | ^_g ay- u a"t
=l l ro{uat, Na4 r
(1.42)
(l.4r)
- Na,t= -"!.0,J,w at, ,[,( r\ dy "!*) dx ) 1.3, we have on f, r=/.
Therefore,dx=dy. Hence
- ua,t=[,[-, -,'i)* J,tvat, t,
Flg.1.3 An illustration ol Exampte 1.13.
(1.44)
INTRODUCTION TO PARTIALDIFFERENTIAL EQUATIONS
70
since on qP, y = constant. Therefore, dy = 0. Thus,
f -,La* I t u a. r - u a * l =JQP f - N a t =JQP
JQP'
Ox
(r . 4 s )
Similarly, on PR, x = constant. Hence, dx = 0. Thus
-,?+' I say-xa*t=[--r+=[ ' ' JpR JpR dy
JpR'
(r.46)
Eqs. (1.44)-(1.46)into Eq. (1.43),we obtainfrom Eq. Q.al, the relation Substituting
a,-' *o x*)* a,*J,r-,fi o, !n! wr - r *otya*+=J,l, v r fi ^L, o Y ) rI",-" "\ But 0,
0v r * J p p -2' r a ' = F ' u l o J o o " E * t
.
-P
Therefore, tt-
)ln
vr -
t'
1
) " =[.] -"ff,a,-,7* at
"\
Dr)vcdv
+l-vulb+),pufrdx+)ro-ufidt Now choosingv(x,y;6,il (i) Z*v=0 (ii)
dv ^=tt
Av (iii; | =0 oy (iv) v=l
0.41)
as the solution of the adt equation such that
throughoutthe.ry-plane w h e ny = 4 , i . e . , o n Q P w h e nx = 6 , i . e . , o n P R at P((,4).
Equation(1.47) becomes
ov ou.\ tt at= t( -u x-v;dxl+(uv\p-(u)p | { v D a x ,|,-\l o- a y ox ) n
or
( u ) p = ( u- v ) e * 1 - ( - , ! a , - ' * * l - f i ( v F ) d x d t ,r\ oy
dx
J ,t
(r.48)
FUNDAMENTAL
1l
CONCEPTS
f tf a (uv)q-tuv)p = | _ d(uvt= l-li1n)ax Jt
2 + ltwlay dy
lox
=
f
J, '. .r Eq. (1.48)can be rewrittenas
1 I I
(urv dx+ uv, dx+ urv dy+ uv, dy\
- pr; axay (u)p=(uvtp = (ur,dy+*, ay1 J, lJ
( l .4e)
IR
: -:il1', addingEqs. (1.48) and (1.49), we get I
(u)p=11@v)p+{*)n)+
*
lr.
2) r
(uv, dx- vu, dx)
at*,', an- II eFtdxd.y )[ ,{ur, IR
at-l.ltPlE 1.14 Yerify that the Greenfunctionfor the equation d2u 2 (du*!!\=n * d xd y x + y \ d x d y ) . , : : c r t o u = 0 , 0 u l d x = 3 x 2o n y = r , i s g i v e nb y (x + y) l2xy + 1( - rl.)g - y) + 2(r7) ,r^,t,t,'rt-T i-: :ltain the solutionof the equationin the form - x y+ 2 y 2 ) y=1x-y1(2x2 Solution
In the given problem,
,,=#k.h*.h*=,
(,so)
-::ring this equationwith the standardcanonicalhyperbolicequation(1.24),we have o=b=
2 , x+ y
C=0,
F=o
:: lint equationis Z+(v)=Q,\vhs1g
-!': - a= (Zl-!(JL). L.(D= dxdy dx\x+y)
'-:at Lrv=0
throughout the r/-plane
dy\x+y)
(l.sl)
nt
INTRODUCTIONTO PARTTALDIFFERENTIALEQUATIONS
,,^ (lll
-d v = -v z dx x+ y
on PQ, i,e., on y=q
(iii) +=---:--v oy x+y
on PR, i.e., on -r = f
(iv) v=l
at P(4,t1).
(1rs2)
If v is definedby /-r
.,\
v(x, y; (,4"1=:-:--!J-lzxy + (( _ r) (x _ y) + 2qryl
\e+D"
( l .s3)
Then
#=ffi,,,.o-^v|*ut.#*l + 2Y2 +2x(( - 4)+2(41
*= A#*,
( 1.54)
and
dzv _4(x+y)
0x 0y
(1.s5)
G + tD3
dv = -)' t \ e _ tDt '+z6tt) .gry +zx2-2y\q a l 1 1 +r ' f ' ' " ' ' ' ^ Usingtheresultsdescribed by Eqs.(1.53f{1.56), Eq.(t.51)becomes
'*P1=!:-dxdy
' (? *':)* x+ y\dx 0y)
= 1 . ! r * ! ) _, G+d"
o' 1x+y)2
, ? . _ , r l 4 x y + z (+xyz2 ) l
(x+y)((+4)r"
or
z * 1 u y4=( ' + Y ) -4 ( x + v=) s G +q)" (6+d' Hencecondition(i) of Eq. (1.52) is satisfied.Also, on y=7.
*
= A#*'
+ 2t12 +2x(( - 11) +2(41
0.s6)
73
FUNDAMENTAL CONCEPTS
*1,=,=dipq2 +zx((+'D+z(qt
(t.s7)
2v/(x+ y) at y =r7 is given by 2v2 x+y x+q =
ffirr*r*n
-Do-d+z6q)
I
(l.s8)
.tlznz+2x(( +r)+2{41 G+?D'
Eqs.(1.57)and (1.58),we get -0: v- =2 - Y dx x+ y
at V=n
property(ii) in Eq. (1.52)hasbeenverified.Similarly,property(iii) can also be verified. atx=1, v = q ' F+n G+ilG+D2 v= -2-+124n +G _ tD' +26ry1= \q+nr G + ril3
(iv) in Eq. (1.52) has also beenverified. (1.50)and (1.51),we have
- uL*(v)=v!+ -, !+. +( 4). 4( 2L\ vl(u\ dxdy dxdy dx\x+y dy\x+y) )
vu\ 0(2vu\ = -d (l0! -u: -\ l - -a (l r =a- v l\+ -d (l 2 l+=-l| dy\ dx) dx\ dy) dx\x+y) dy\x+y) ( = -d- l - - zvu u-dx\x+y = -AM +dx
dv) 0 ( 2vu l+ ^ l-+v:dy) dy\x+y
du\ | dx.)
dN dy
M=2* -uaru, N= 2'" *u7u x+y
dy
x+y
dx
-.ing Green's theorem, we have tr c r.O - uL* (v\l dxdy --JaRW (M dy- N dx\ dy- N d') = )) lvL(u\ J; IR
* !'
( l .5e)
74
INTRODUCTION TO PARTIALDIFFERENTIAL EQUATIONS
(see Fig. 1.3) on QP, y = C. Hence, dy = 0; on PR, x = C. Therefore, dx = 0
p l l z u v- u - ^l v- l ld y.-
= |
J R| 1 Ltr+/
| 2 u ,+ v -a= ^- l d .xf
\-
dyl'
lr+y
dr)
l
.l
z u u d " ] 1 . r a l[ 2 u , 0 , ] 1 . _ tr Pt l1I _ + v _ _ _ f l d Y +l | 1 : _ r j l l d y J?
Lt;+/
J PL t - r + /
dx))
dYt.t
However, p iv au\ . rP 2uv ((Zuv J?\x+v. '*)*=Jn fi,x*t*''n-ln' ^aNow, using the conditionu=0 on y=x, Eq. (1.59) becomes
qud'dv=JI:/ ( (* -,*)* - 11 -,'i"l* !!R t uut- uL* . , n |* dy) dx t \x+), \x+.y 2u'
-l'
rQx+y
dt-(ur\o+(uvrn-l' r\a, "
JQ
dx
.l',#*-tl("#,)* (iiF(iv) of Eq. (1.52),the aboveequationsimplifiesto Also,usingconditions
(u)p=(uv)q-Ji"** Now using the given condition,viz. *=3t2
on nQ
we obtain
- 3J: (u) p=(uv)e 4?##4)e =-+-l'st \€+ryr"E
*,3q41a,
-$*lenrn, =-s^tl *-r lir, = ffi,4/
* 62r72 + rta 1+ 3qrt 1t,* rl,))
= G - , i e € z- 6 n + z n 2 )
FUNDAMENTAL CONCEPTS
'--erefore,
u(x, y) = (x - y) (2x2- xy + 2y21 :ce the result. .+VPLE 1.15 Showthat the Green'sfunctionfor the equation d-u -;;+a=0 ox oy
v(x,y|€,D = J0 J0 denotesBessel'sfunctionof the first kind of order zero. Solution
Comparing with the standardcanonical hyperbolic equation (1.24), we have a=b=0.
c=l
: 3 self-adt equation and, therefore, the Green's function v can be obtained from d-v ;--;- +Y =U ox t7v
-d"v-^= u
o nY = q
dx
-0v ;-=U
o nx = 1
oy
a tx = 6 , y = 7 t 0 k= a ( x - i l \ - n ) dv dx
0v d( dQ 0x
kQHl=oo-,1) dx
1=io"rty-nl oxK
75
76
INTRODUCTIONTO PARTI{ DIFFERENTIAI EQUATIONS
Thus, 0v dv a .t-r. ;-=-;;;Q"'\y-4) ax dgE .t d'v
-
^T^ dldva.t-L
'v-il)I a,ay= ayLaie' ag-] =110"* ?ua0,..-, , rr-r,. 2+rr-nto-k v - n-,a'1, t k dQ aQ ay\Y-ry)*e
L
N ay)
However,
fr=io"-<'-a Therefore,
)2un''' I +=Ap'o!*1r-r16-k(,-q)o-n)ld'o**d'' ' '--u-ntfii0'-rtx-tt] dxdykL do k' ap Hence,
ffi*"=o
gives
a1*{11_e14 zlo! 6ro-r, ' ' d 0*r,r ' -Lf*,=o kLk' dO' k aO ) or
o-( d2: * rr* 4 l* u= o ,r-r d0) k'\ d0" OT
^ t2 Q ' v "+ Q v ' + L Q K v = 0 Let k=2, a=4. Then the above equation reducesto Q2v"+ (v, +Q2v=0=v,,+lv,+v
0
(Bessel,sequation)
Its solution is known to be of the form
u= Jo@)= JoQJG- g U - rt) which is the desiredGreen'sfunction.
lr
FTJNDAMENTALCONCEPTS
EXERCISES I' Find the regionin the xy-pranein which the following equationis hyperbolic: l(x- y)2 - lluo + 2u, +f(x - y)2 _tlu, =g 2. Find the familiesof characteristics of the pDE (l- x2)uo- u, =o in the elliptic and hyperboliccases. 3. Reducethe following PDE to a canonicalform =0 uB + t"yurry {. Classifrand reducethe following equationsto a canonicalform: (a) y2uo-x2uo=0,
y>0.
r>0,
(b) uo +2u, +\0 =0. (c) e'uo*eYuo=u. (d) x2uo t2ryu, + y2u, = 0. (e) 4uo+5u, +\ry +ux +uy =2. 5. Reducethe following equationto a canonicalform and hencesolve it: 3uo+l\ur+3u)ry=O 6. lf L(u)=c2yo-ur,
then show that its adt operatoris given by L* = c2vo -vx
-. Determine the adt operator,* corresponding to L(u) = Ayo I pu, +Curry+ Du, * Eu, t Fu whercA, B, C, D, E and F are functions of .r and y only. i. Find the solutionof the following Cauchyproblem u, = F(x, y) glven
u=f (x),
= fi= sUl ontheliney I
using Riemann's method which is of the form I t yi = @o> u(xo, +t
INTRODUCTION TO PARTIALDIFFERENTIAL EOUATIONS
where IR is the triangular region in the xy-plane boundedby the line y = I and the lines x = x6, ! = lo through (-16,y6). 9. The characteristicsof the partial differential equation , 12" aad2" . ^ d2t -;-= - ,;-i + csszvj all + 3! = 0 ox oy dx dy dx' dvwhen it is of hyperbolictype are... and... (CATE-Maths,1997) = y 10. Using ry x + as one of the transformationvariable, obtain the canonical form of -d: -z; -uz ; - ^ - -0 f -2 . =u- = u.. d 2 u
dx'
ox oy
dy' (GATE-Maths,1998)
Choosethe correct answer in the following qu€stions: 11. The PDE y3uo - (r2 -1)u, =O is
i
(A) parabolic in {(x,y):x<0} @) hyperbolicin {(x, y) : y > 0} (C) ellipticin IR2 (D) parabolic in {(r, y):x > 0}. 12. The equation x21y-l1zo - x7y2-t)rry+y(yz -l)zo+ z,=0
(GATE-Maths, 1998)
is hyperbolicin the entirex/-planeexceptalong (A) x-axis @) y-axis (C) A line parallelto y-axis (D) A line parallelto r-axis. (GATE-Maths,2000) 13. The characteristic curvesof the equation ,2uo - Y2,o = ,2Y2+r, (A) rectangular hyperbola (C) circle
x>0 are (B) parabola (D) straightline. (GATE-Maths, 2000)
14. Pickthe regionin whichthe followingPDE is.hyperbolic: yuo+2xyar+xu)ry=ux+uy
(A) xy +l
(B) r/+0
(C) xy>l
(D) r/ > 0. (GATE-Maths,2003)